vSTORM in Venice

C. . . 112

C.D Tunnell (JAI/Oxford) on behalf of the collaboration

Today's talk

NeuTel13, 13 March 2013

Wednesday, 13 March 13

Christopher Tunnell, JAI/Oxford

Today's talk

mperial College

UNIVERSITY OF

 Today's question: "What machine can we build <u>now</u> to elucidate claims of sterile v using µ-decay beams?"

Today's talk

mperial College

• Today's answer: "A 3.8 GeV muon storage ring with a MINOS-like detector at 2 km"

 Today's question: "What machine can we build <u>now</u> to elucidate claims of sterile v using µ-decay beams?"

Today's talk

mperial College

- Today's answer: "A 3.8 GeV muon storage ring with a MINOS-like detector at 2 km"
- Bonus credit: "µ- and electron-neutrino cross sections"

 Today's question: "What machine can we build <u>now</u> to elucidate claims of sterile V using µ-decay beams?"

Today's talk

mperial College

- Today's answer: "A 3.8 GeV muon storage ring with a MINOS-like detector at 2 km"
- Bonus credit: "µ- and electron-neutrino cross sections"
- Bonus credit: "Future accelerator R&D"

UNIVERSITY OF

OXFORD

Royal Holloway University of London

I960s π decay beam (and horns)

Wednesday, 13 March 13

UNIVERSITY OF

I960s π decay beam (and horns)

I970 D.G. Kosharev proposed using µ decay at SPS (ISR-DI/74-62)

NeuTel13, 13 March 2013

Wednesday, 13 March 13

UNIVERSITY OF

- I960s π decay beam (and horns)
- I970 D.G. Kosharev proposed using µ decay at SPS (ISR-DI/74-62)
- I980 D. Neuffer proposes ~I GeV muon decay ring for neutrino oscillations

DESIGN CONSIDERATIONS FOR A MUON STORAGE RING

David Neuffer Fermi National Accelerator Laboratory*, Batavia, ILL 60510

ABSTRACT

It was noted earlier¹ that a muon (μ) storage ring can provide neutrino (ν) beams of precisely knowable flux and therefore suitable for ν oscillation experiments. In that paper it was suggested that parasitic use of the Fermilab \bar{p} precooler could provide a useful μ storage ring. In this paper design possibilities for μ storage rings are explored. It is found that a low energy (~1 GeV) ring matched to a high intensity proton source (8 GeV Booster) is most practical and can provide ν beams suitable for accurate tests of ν oscillations.

- I960s π decay beam (and horns)
- I970 D.G. Kosharev proposed using μ decay at SPS (ISR-DI/74-62)
- I980 D. Neuffer proposes ~I GeV muon decay ring for neutrino oscillations
- I998 S. Geer starts modern Neutrino Factory (NF) effort

- I960s π decay beam (and horns)
- I 970 D.G. Kosharev proposed using µ decay at SPS (ISR-DI/74-62)
- I980 D. Neuffer proposes ~I GeV muon decay ring for neutrino oscillations
- I998 S. Geer starts modern Neutrino Factory (NF) effort
- Summer 2011: nuSTORM (then VLENF) born

NeuTel13, 13 March 2013

IDS-NF/2012 4.0

NF for CPV

NF for CPV

NeuTel13, 13 March 2013

60 GeV/c protons

60 GeV/c protons

100 kW

60 GeV/c protons

Accelerator

I.Target Station

- 60 GeV/c protons (e.g., FNAL MI/CERN SPS)
- 100 kW
- High-Z Ta target (considering C too)
- Horn pion collection; Li lens not ideal

2.Collection/transport channel

- Quadrupole triplets for transport
- Two options:

I.Stochastic injection of π

2.Kicker with $\pi \rightarrow \mu$ decay channel

3. Decay ring

- Two options with ~150 m straights:
 - 1. Large aperture FODO
 - 2. Racetrack FFAG
- Neutrino Factory beam instrumentation; anticipate few % flux uncertainty
 - BCTs
 - Magnetic spectrometer
 - Polarimeter

Accelerator

 $N_{\mu} = (POT) \times (\pi/POT) \times \varepsilon_{\text{collection}} \times \varepsilon_{\text{inj}} \times (\mu/\pi) \times A_{\text{dynamic}} \times \Omega$

- > 10²¹ POT in 5 years of running @ 60 GeV in Fermilab PIP era
- 0.1 π/POT (FODO)
- > $\varepsilon_{\text{collection}} = 0.8$
- > $\epsilon_{inj} = 0.8$
- > $\mu/\pi = 0.08$ (yct X μ capture in $\pi \rightarrow \mu$ decay) [π decay in straight]
 - > Might do better with a $\pi \rightarrow \mu$ decay channel
- A_{dynamic} = 0.75 (FODO)
- > Ω = Straight/circumference ratio (0.43) (FODO)

→This yields ≈ 1.7 X 10¹⁸ useful µ decays

protons

100 kW

5 GeV/c π 3.8 GeV/c μ Decay ring $\pi \rightarrow \mu$

Near detector hall

50 m

ND

Test beam facility

- Near detector for oscillation physics
- First electron neutrino test beam
- Precision cross section physics
 - Specifically, electron v for future long-baseline expts
- ...whatever else you want

Near detector hall

Test beam facility

G.P. Zeller

104

E, (GeV)

TIME=)

~2 T

2 km

FD

$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{e}$

LSND: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

LSND: $CPT(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$
LSND: $\operatorname{CPT}(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \nu_{e} \to \nu_{\mu}$

LSND: vSTORM: $\operatorname{CPT}(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \nu_{e} \to \nu_{\mu}$

However, there is a anti-nu background:

hence magnetization

Decaying particle	Channel	Interaction	Cut
	$v_e \rightarrow v_\mu$	CC	(Signal; do not cut)
	$\bar{v}_{\mu} ightarrow \bar{v}_{\mu}$	CC	Curvature
μ^+	$\bar{v}_{\mu} \rightarrow \bar{v}_{\mu}$	NC	Range
	$v_e \rightarrow v_e$	CC/NC	itange
	$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	CC/NC	Range and double suppressed
	$v_e \rightarrow v_\mu$	NC	
π^+	$v_{\mu} \rightarrow (v_{\mu} \text{ or } v_{e})$	CC/NC	Dipoles and timing with π 's $c\tau$

Interactions

C.Tunnell (me) Oxford

Royal Holloway

UNIVERSITY OF

Decaying Particle	Channel	$N_{\rm osc.}$	$N_{ m null}$	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
Signal	$\nu_e \rightarrow \nu_\mu \ \mathrm{CC}$	332	0	∞	∞
	$\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \mathrm{NC}$	47679	50073	-4.8%	-10.7
μ^+	$\nu_e \to \nu_e \mathrm{NC}$	73941	78805	-6.2%	-17.3
	$\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \ \mathrm{CC}$	122322	128433	-4.8%	-17.1
	$\nu_e \rightarrow \nu_e \ \mathrm{CC}$	216657	230766	-6.1%	-29.4
+	$\nu_{\mu} \rightarrow \nu_{\mu} \ \mathrm{CC}$?	?	?	?
	$\nu_{\mu} \rightarrow \nu_{e} \ \mathrm{CC}$?	?	?	?

5 years, 2 km, 1.3 kt

NeuTel13, 13 March 2013

Full GEANT4 Simulation

- Extrapolation from ISS and IDS-NF studies for the MIND detector
- Uses GENIE to generate the neutrino interactions.
- Involves a flexible geometry that allows the dimensions of the detector to be altered easily (for optimization purposes, for example).
- Does not yet have the detailed B field, but parameterized fit is very good
- **Event selection/cuts**
 - Cuts-based analysis
 - Multivariate in development

UNIVERSITY OF

In Century Fea

S. Parke told me: "don't show me plots until it's Ι0σ!"

NeuTel13, 13 March 2013 Wednesday, 13 March 13

In Gentlary Feat

Experimentalist: "Can't guarantee 100! Extinction asteroid in next decade 1/100k"

Royal Holloway

UNIVERSITY OF

S. Parke told me: "don't show me plots until it's Ι0σ!"

NeuTel13, 13 March 2013 Wednesday, 13 March 13

Implementation

NeuTel13, 13 March 2013

Imperial College London

• Good sterile neutrino program

NeuTel13, 13 March 2013

Wednesday, 13 March 13

Christopher Tunnell, JAI/Oxford

UNIVERSITY OF

OXFORD

Royal Holloway University of London

Imperial College

• Briefly on cross sections

NeuTel13, 13 March 2013

Wednesday, 13 March 13

Christopher Tunnell, JAI/Oxford

Royal Holloway

UNIVERSITY OF

Imperial College

- Briefly on cross sections
- Then let's talk details...

Wednesday, 13 March 13

Royal Holloway

UNIVERSITY OF

nuSTORM x-section measurement:

Channel	$N_{\rm evts}$
$\bar{\nu}_{\mu}$ NC	844,793
$\nu_e \text{ NC}$	$1,\!387,\!698$
$\bar{\nu}_{\mu}$ CC	2,145,632
$\nu_e \ {\rm CC}$	$3,\!960,\!421$

• Above (for stored μ^+):

- nuSTORM event rates/100T at near detector 50 m from straight with μ^{+} stored
- Right:

-Almost no v_e measurements

- Q: "How measure CP ratio w/o?"
- Detector optimization underway

FNAL Siting Plan

Steve Dixon Fermilab FESS

UNIVERSITY OF

Royal Holloway University of London

NeuTel13, 13 March 2013

P. Kyberd, ¹ D.R. Smith, ¹ L. Coney, ² S. Pascoli, ³ C. Ankenbrandt, ⁴ D. Adey⁴, S.J. Brice, ⁴ A.D. Bross, ⁴ H. Cease,⁴ J. Kopp,⁴ N. Mokhov,⁴ J. Morfin,⁴ D. Neufer,⁴ M. Popovic,⁴ P. Rubinov,⁴ S. Striganov,⁴ A. Blondel,⁵ A. Bravar,⁵ F. Dufour⁵, Y. Karadhzov⁵, A. Korzenev⁵, E. Noah,⁵ M. Ravonel⁵, M. Rayner⁵, R. Asfandiyarov⁵, A. Haesler⁵, C. Martin⁵, E. Scantamburlo⁵, F. Cadoux⁵, R. Bayes,⁶ F.J.P. Soler,⁶ D. Colling⁷, A. Dobbs,⁷ J. Dobson⁷, P. Dornan⁷, K. Long,⁷ J. Pasternak,⁷ E. Santos,⁷ J.K. Sedgbeer⁷, M.O. Wascko,⁷ Y. Uchida⁷, S.K. Agarwalla,⁸ S.A. Bogacz,⁹ Y. Mori,¹⁰ J.B. Lagrange,¹⁰ A. de Gouvêa,¹¹ M. Link, ¹⁴ P. Hubor,¹⁴ Y. Kuno,¹² A. Sato,¹² V. Blackmore,¹³ J. Cobb,¹³ C. D. Tunnell,¹³ A. Webber¹³, J.M. Link,¹⁴ P. Huber,¹⁴ and W.Winter¹⁵, K.T. McDonald¹⁶, R. Edgecock¹⁷, W. Murray¹⁷, S. Ricciardi¹⁷, C. Rogers¹⁷, C. Booth¹⁸, M. Dracos¹⁹, N. Vassilopoulos¹⁹, J.J. Back²⁰, S.B. Boyd²⁰, P.F. Harrison²⁰ ¹Brunel University, ²University of California, Riverside, ³Institute for Particle Physics Phenomenology, Durham University ⁴Fermi National Accelerator Laboratory, ⁵University of Geneva ⁶University of Glasgow, ⁷Imperial College London, ⁸Instituto de Fisica Corpuscular, CSIC and Universidad de Valencia, ⁹Thomas Jefferson National Accelerator Facility, ¹⁰Kyoto University, ¹¹Northwestern University, ¹²Osaka University, ¹³Oxford University, Subdepartment of Particle Physics, ¹⁴Center for Neutrino Physics, Virginia Polytechnic Institute and State University ¹⁵Institut für theoretische Physik und Astrophysik, Universität Würzburg

mperial College

¹⁶Princeton University, ¹⁷STFC Rutherford Appleton Laboratory, ¹⁸University of Sheffield,

¹⁹IPHC, Universit'e de Strasbourg, ²⁰University of Warwick

LOI submitted to Fermilab PAC, June 2012 (P=1028) nuSTORM: input to the update of the European Strategy for Particle Physics, July 2012 UNIVERSITY OF

dams Institute for Accelerator Science

mperial College

➢Facility

- > Targeting, capture/transport & Injection
 - >Need to complete detailed design and simulation
- Decay Ring optimization
 - Continued study of both RFFAG & FODO decay rings
- Decay Ring Instrumentation
 - Define and simulate performance of BCT, polarimeter, Magneticspectrometer, etc.
- Produce full G4Beamline simulation of all of the above to define v flux
 And verify the precision to which it can be determined.

Adams Institute for Accelerator Science

mperial College

Royal Holloway

Alan Bross

FNAL

UNIVERSITY OF

Detector simulation

For oscillation studies, continue MC study of backgrounds & systematics

- Start study of disappearance channels
- > Look in detail at all sources of backgrounds: CR, atmospheric V, etc.
- > Will lead to detector (FAR) optimization
- For cross-section (& general V interaction physics) measurements need detector baseline design
 - Learn much from work for LBNE & IDS-NF (both detector & physics)
 - \geq Increased emphasis on v_e interactions, however

(see Bross FNAL seminar for more)

Christopher Tunnell, JAI/Oxford

- nuSTORM workshop at CERN:
 - -26^{th} and 27th March 2013
 - Goal is finalisation of Eol to CERN
 - https://indico.cern.ch/conferenceDisplay.py?confld=219460
- nuSTORM workshop at Virginia Tech.:
 - 14 th and 15 th April 2013
 - Goal is to lay foundations for preparation of proposal to FNAL
 - ➡ for June PAC and Snowmass
 - PDR through FESS
 - -http://cnp.phys.vt.edu/meetings/nuSTORM2013.html
- Information:
 - NUSTORM mailing list on listserv.fnal.gov

Neutrinos from Stored Muons (*v*STORM): Expression of Interest

C	onter	nts	ERI						
1	Introduction								
	1.1	Overview							
	1.2	ν STORM and the emerging CERN neutrino programme							
2	Motivation								
	2.1	Sterile neutrino search							
	2.2	Neutrino-nucleon scattering							
	2.3	Technology test-bed							
3	The	e vSTORM facility; overview							
	3.1	Accelerator facility							
	3.2	Detectors for sterile neutrino search							
	3.3	Detectors for neutrino scattering studies							
4	Imp	plementing the <i>v</i> STORM facility							
	4.1	Implementing vSTORM at CERN							
	4.2	Implementing <i>v</i> STORM at FNAL							
5	Pro	posed programme							
6	Sun	nmary							

Royal Holloway University of London

NeuTel13, 13 March 2013

Wednesday, 13 March 13

Christopher Tunnell, JAI/Oxford

Conclusions

• The 3 legs of nuSTORM physics:

Royal Holloway University of London NeuTel13, 13 March 2013

Wednesday, 13 March 13

Christopher Tunnell, JAI/Oxford

Ι. Sterile neutrino sensitivity

Royal Holloway

OXFORD

Imperial College

Londo

Conclusions

- I. Sterile neutrino sensitivity
- 2. Neutrino cross sections

Royal Holloway

UNIVERSITY OF

OXFORD

Imperial College

Londo

Conclusions

NeuTel13, 13 March 2013

- I. Sterile neutrino sensitivity
- 2. Neutrino cross sections
 - S. Mishra: ">60 potential thesis topics"

Royal Holloway

UNIVERSITY OF

Imperial College

Conclusions

NeuTel13, 13 March 2013

Imperial College

- The 3 legs of nuSTORM physics:
 - I. Sterile neutrino sensitivity
 - 2. Neutrino cross sections

S. Mishra: ">60 potential thesis topics"

3. Accelerator R&D

UNIVERSITY OF

Royal Holloway

- I. Sterile neutrino sensitivity
- 2. Neutrino cross sections

S. Mishra: ">60 potential thesis topics"

- 3. Accelerator R&D
- Significant European involvement:

UNIVERSITY OF

mperial College

Conclusions

- The 3 legs of nuSTORM physics:
 - I. Sterile neutrino sensitivity
 - 2. Neutrino cross sections
 - S. Mishra: ">60 potential thesis topics"
 - 3. Accelerator R&D
- Significant European involvement:
 - Leading sterile neutrino design (Oxford/Glasgow)

UNIVERSITY OF

mperial College

Conclusions

- The 3 legs of nuSTORM physics:
 - I. Sterile neutrino sensitivity
 - 2. Neutrino cross sections
 - S. Mishra: ">60 potential thesis topics"
 - 3. Accelerator R&D
- Significant European involvement:
 - Leading sterile neutrino design (Oxford/Glasgow)
 - CERN baseline

UNIVERSITY OF

mperial College

Conclusions

NeuTel13, 13 March 2013

- The 3 legs of nuSTORM physics:
 - I. Sterile neutrino sensitivity
 - 2. Neutrino cross sections
 - S. Mishra: ">60 potential thesis topics"
 - 3. Accelerator R&D
- Significant European involvement:
 - Leading sterile neutrino design (Oxford/Glasgow)
 - CERN baseline
 - Cross sections (Imperial/Warick)

UNIVERSITY OF

mperial College

Conclusions

NeuTel13, 13 March 2013

- The 3 legs of nuSTORM physics:
 - I. Sterile neutrino sensitivity
 - 2. Neutrino cross sections
 - S. Mishra: ">60 potential thesis topics"
 - 3. Accelerator R&D
- Significant European involvement:
 - Leading sterile neutrino design (Oxford/Glasgow)
 - CERN baseline
 - Cross sections (Imperial/Warick)
- People will be studying neutrinos for a long time

mperial College

Conclusions

- The 3 legs of nuSTORM physics:
 - I. Sterile neutrino sensitivity
 - 2. Neutrino cross sections
 - S. Mishra: ">60 potential thesis topics"
 - 3. Accelerator R&D
- Significant European involvement:
 - Leading sterile neutrino design (Oxford/Glasgow)
 - CERN baseline
 - Cross sections (Imperial/Warick)
- People will be studying neutrinos for a long time

Developing new beams today means you have them tomorrow

Conclusions

mperial College

NeuTel13, 13 March 2013

Interested? subscribe to NUSTORM mailing list on listserv.fnal.gov

NeuTel13, 13 March 2013

Wednesday, 13 March 13

Christopher Tunnell, JAI/Oxford

UNIVERSITY OF

Note that this is blatantly Alan Bross's slide!

Costing

Basis of Estimation

- Utilized data from the LBNE CD1 (95% CL estimate on TPC ≈ \$0.9B) and extrapolated to nuSTORM components
 - Primary beam line
 - Target Station
 - Beam absorber
 - Conventional Facilities
 - Civil construction
 - > Used FESS estimates from μ 2e CD1 review where appropriate
- The above are, of course, fully loaded and escalated
 Magnet Costs based on Strauss & Green model

Cost based on LBNE costs Fully loaded and escalated

Sub System	Cost M\$1
Primary Beam Line	24
Target Station	56
Transport Line	14
Decay Ring	82
Near Hall	29 ²
Far Detector	24 ³
Sub Total	229
Project Office	34 ⁴
Total	263

¹No allowances made for reuse of existing equipment

²Near Hall sized for multiple experiments & ND for SBL oscillation physics

³FD cost based on MINOS as-built & EUROnu costing for MIND +

full burdening + escalation & no allowance for existing FD Hall

⁴Assumes LBNE estimate of $\approx 15\%$ (including contingency)

Alan Bross

Fermilab Colloquium