Daya Bay II: A multi-purpose LS-based experiment

Yifang Wang Institute of High Energy Physics NeuTel'2013, March 13, 2013

What is next after θ₁₃ determined ?

Neutrino oscillation

- ⇒ What is the neutrino mass hierarchy ?
- ⇒ Are there CPV in neutrinos ?
- \Rightarrow Is the neutrino mixing angle θ_{23} maximized ?
- ⇒ Is the neutrino mixing matrix unitary ?
- What are the absolute mass of neutrinos ?
- Are neutrinos their anti-particles ?
- Are there sterile neutrinos ?
- Are there fourth generation neutrinos ?
- How to detect relic neutrinos ?

Idea of the Daya Bay-II Experiment

- 20 kton LS detector
- **3% energy resolution**
- **Rich physics possibilities**
 - ⇒ Mass hierarchy
 - ⇒ Precision measurement of 4 mixing parameters
 - ⇒ Supernovae neutrinos
 - ⇒ Geoneutrinos
 - ⇒ Sterile neutrinos
 - ⇒ Atmospheric neutrinos
 - ⇒ Exotic searches

Talk by Y.F. Wang at ICFA seminar 2008, Neutel 2011; by J. Cao at Nutel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103,2008; PRD79:073007,2009

The plan: a large LS detector

LS volume: × 20→ for more mass & statistics
 light(PE) × 5→ for resolution

Fourier transformation:

Thanks to a large θ_{13}

Detector size: 20kt Energy resolution: 3%/√E Thermal power: 36 GW Baseline 58 km

Taking into account △M²₂₃

• A χ^2 method by taking into account ΔM^2_{23} from T2K and Nova in the future:

If $\Delta M^2_{\mu\mu}$ at 1.5% precision, mass hierarchy can be determined to ~4.5\sigma in 6 years

If $\Delta M^2_{\mu\mu}$ at 1% precision, mass hierarchy can be determine to ~5 σ in 6 years

Optimum baseline

- Optimum at the oscillation maximum of θ_{12}
- Multiple reactors may cancel the oscillation structure
 - \Rightarrow Baseline difference should be controlled to be less than 500 m

Precision measurement of mixing parameters

- Fundamental to the Standard Model and beyond
- Probing the unitarity of U_{PMNS} to ~1% level !
 - Uncertainty from other oscillation parameters and systematic errors, mainly energy scale, are included

	Current	Daya Bay II
Δm_{12}^2	3%	0.6%
Δm_{23}^2	5%	0.6%
$\sin^2\theta_{12}$	6%	0.7%
$\sin^2\theta_{23}$	20%	N/A
$\sin^2\theta_{13}$	14% → 4%	~ 15%

Will be more precise than CKM matrix elements !

Supernova neutrinos

Less than 20 events observed so far

Assumptions:

- ⇒ Distance: 10 kpc (our Galaxy center)
- ⇒ Energy: 3×10⁵³ erg
- \Rightarrow L_v the same for all types
- $\Rightarrow \text{ Tem. \& energy } T(\underline{v}_e) = 3.5 \text{ MeV}, \langle E(\underline{v}_e) \rangle = 11 \text{ MeV}$ $T(v_e) = 5 \text{ MeV}, \quad \langle E(v_e) \rangle = 16 \text{ MeV}$ $T(v_x) = 8 \text{ MeV}, \quad \langle E(v_x) \rangle = 25 \text{ MeV}$

Many types of events:

- $\Rightarrow \quad \overline{v_e} + p \rightarrow n + e^+, \sim 3000 \text{ correlated events}$
- \Rightarrow $\overline{v_e} + {}^{12}C \rightarrow {}^{12}B^* + e^+$, ~ 10-100 correlated events
- \Rightarrow v_e + ¹²C \rightarrow ¹²N* + e⁻, ~ 10-100 correlated events
- \Rightarrow $v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*, \sim 600$ correlated events
- Water Cerenkov detectors can not see these correlated events

- $\Rightarrow v_{x} + p \rightarrow v_{x} + p, \text{ single events}$
- $\Rightarrow v_e + e^- \rightarrow v_e + e^-, \text{ single events}$
- $\Rightarrow v_{x} + e^{-} \rightarrow v_{x} + e^{-}, \text{ single events}$

Energy spectra & fluxes of all types of neutrinos

<u>Geoneutrinos</u>

Current results:

- ⇒ KamLAND: 40.0±10.5±11.5 TNU
- $\Rightarrow \quad \text{Borexino:} \\ 64 \pm 25 \pm 2 \text{ TNU} \\ \end{cases}$
- Desire to reach an error of 3 TNU: statistically dominant
- Daya Bay II: >×10 statistics, but difficult on systematics
- Background to reactor neutrinos

Challenges

- ♦ Large detector: 20 kt LS → \$\$\$\$ ~ 38m
- ◆ Energy resolution: < 3%/√E → 1200 p.e./MeV
 ⇒ To generate more light
 ⇒ To detect more light

	KamLAND	Daya Bay II
LS mass	~1 kt	20 kt
Energy Resolution	<mark>6%/</mark> √E	<mark>3%/</mark> √E
Light yield	250 p.e./MeV	1200 p.e./MeV

More photons, how and how many ?

•	Highly transparent LS:	
	⇒ Attenuation length/D: 15m/16m -	≥ 30m/34m ×0.9
•	High light yield LS:	
	⇒ KamLAND: 1.5g/l PPO → 5g/l Pl	?0
	Light Yield: 30%→ 45%;	× 1.5
•	Photocathode coverage :	
	⇒ KamLAND: 34% → ~ 80%	× 2.3
•	High QE "PMT":	
	⇒ 20" SBA PMT QE: 25% → 35%	× 1.4
	or New PMT QE: $25\% \rightarrow 40\%$	× 1.6
	Both: $25\% \rightarrow 50\%$	× 2.0
		$4.3 - 5.0 \rightarrow (3.0 - 2.5)\% / \sqrt{E}$

Other contributions: 0.5% constant term & 0.5% neutron recoil uncertainty

More Photoelectrons-- PMT

No clearance: coverage 86.5% 1cm clearance: coverage: 83%

20" + 8" PMT 8" PMT for better timing(vertex)

A new type of PMT: higher photon detection eff.

Top: transmitted photocathode

- Bottom: reflective photocathode additional QE: ~ 80%*40%
- MCP to replace Dynodes no blocking of photons
 - ~ ×2 improvement

Low cost MCP by accepting the following:

- 1. asymmetric surface; 👡
- 2. Blind channels;
- 3. Non-uniform gains -
- 4. Flashing channels

中核(北京)核仪器厂 CNNC Beijing Nuclear Instrument Factory

More Photoelectrons-- LS

Longer attenuation length

- Improve raw materials (using Dodecane instead of MO for LAB production)
- \Rightarrow Improve the production process
- ➡ Purification

Higher light yield

- ⇒ Lower temperature
- ⇒ fluor concentration optimization
- ⇒ Wave length shifter

Linear Alky Benzene	Atte. Length @ 430 nm
RAW	14.2 m
Vacuum distillation	19.5 m
SiO ₂ coloum	18.6 m
Al ₂ O ₃ coloum	22.3 m

MC example: Energy Resolution

(%) $\overline{(E_{rec}(MeV))}^{+0.9)\%}$ •AD1 Resolution OAD2 **DYBII MC**, based on **DYB MC** (tuned to data), excep **DYBII** Geometry and 80% photocathode coverage Ge n H-capture **SBA PMT: maxQE from 25% -> 35%** (spallation) Lower detector temperature to 4 degree (+13% light) Co LS attenuation length (1m-tube measurement@430nm n Gd-capture from 15m = absoption 24m + Raylay scattering 40 m \checkmark (AmC, IBD, spallation) to 20 m = absorption 40 m + Raylay scattering 40m 2 3 5 8 6 Erec (MeV) Profile of totalPE versus r^3 Mean 1870

<u>IBD Signal</u>

• Signal:

 $\overline{\nu}_e + p \rightarrow e^+ + n$ $\mathbf{n} + \mathbf{p} \rightarrow \mathbf{d} + \gamma (2.2 \text{ MeV}) \qquad \tau \sim 200 \ \mu \text{s}$

LS without Gd-loading for

- \Rightarrow Better attenuation length \rightarrow resolution
- Lower irreducible accidental backgrounds from LS, important for a larger detector:
 - ✓ With Gd: ~ 10^{-12} g/g
 - ✓ Without Gd: ~ 10^{-16} g/g
- \Rightarrow Less risk
- Longer capture time & lower energy the capture signal
 — more accidental backgrounds

Backgrounds Summary

Assumptions

- → Overburden is 700m
 - $\checkmark~~E_{\mu}$ ~ 211 GeV, R_{μ} ~ 3.8 Hz
- Single rates from LS and PMT are 5Hz, respectively
- ➡ Good muon tracking
- ⇒ Similar muon efficiency as DYB

	Daya Bay	Daya Bay II
Mass (ton)	20	20,000
E _µ (GeV)	~57	~211
L_{μ} (m)	~1.3	~ 23
\mathbf{R}_{μ} (Hz)	~21	~3.8
R _{singles} (Hz)	~50	~10

	B/S @ DYB EH1	B/S @ DYB II	Techniques used for DYB II detector
Accidentals	~1.4%	~10%	Low PMT radioactivity; LS purification; prompt-delayed distance cut
Fast neutron	~0.1%	~0.4%	High muon detection efficiency (similar as DYB)
⁹ Li∕ ⁸ He	~0.4%	~0.8%	Muon tracking; If good track, distance to muon track cut (<5m) and veto 2s; If shower muon, full volume veto 2s

Detector design

- Extremely difficult to build both the stainless steel tank and the acrylic tank
- Options:
 - No steel tank, only acrylic tank
 - Steel tank +
 - Acrylic box/wall
 - Balloon
 - nothing

Option 1: no steel tank

- No more interference
 "Easy" for PMT holding
 Water buffer → cheap
- Difficulties:
 - Larger pressure difference for the acrylic tank

15% density difference leads to a maximum pressure of ~6m in air → A normal aquarium → Not a major problem

Actively Participate in International Competition with the Top Products

- Stress calculation shows that a 12cm thick acrylic tank is feasible but in really...

SNO 1kt: a 10-person team for two years
20kt ???

A variation: acrylic wall

- Mature technology
- Quick installation
- Good for PMT explosion protection
- But
 - ➡ Light loss, 5% ?
 - ⇒ Sealing, compatibility, ..

Option 2: Acrylic box

connect to other

modules

- Mineral oil in optical modules.
- Pipes for MO filling and cabling
- Concerns
 - ➡ Leakage through cables

Option 3: Balloon

- "Cheap" for construction & quick for installation
- Experience from Borexino (0.5kt) & KamLAND (1kt)
- Need to consider film materials(mechanics, transparency, compatibility, welding technique, radon permeability, ...), cleanness, leak check, deployment, backup plan if fails, ...

Option 4: Steel tank only

- No problem for construction
- A fall back plan of the balloon option
- But
 - → PMT protection
 - → Trigger rate by backgrounds
 - Resolution affected by pile-up of background events

If the PMT glass is the same as Daya Bay, radioactivity will be 44 Bq/PMT, or 3.3 MHz in total

If better glass is used, it may be reduced to 0.5-1 MHz

Online background suppression

ratio_max:gen_pos_r

- Divide PMTs to 1476 regions
- Look at the charge ratio Q_i/Q_{total}
 (i: the region ID)
 - \Rightarrow Cut charge ratio < 0.16
 - \Rightarrow Cut N_{p.e.} > 500(~0.4 MeV)
- Event rates can be reduced to 0.6kHz

Resolution is affected:

Energy(MeV)	No Background		Mix Background(1MHz, 500ns)	
	(vertex corrected)		(vertex corrected)	
	sigma	mean	sigma	mean
2*0.511	0.030	1	0.035	0.94
2.22	0.024	1	0.027	0.97
1.173+1.333	0.021	1	0.024	0.97
6.13	0.016	1	0.017	0.99

Prototyping plan

- One or a few of the following:
 - > Φ2m acrylic ball
 - > Φ2m steel ball
 - > Φ35m balloon
 - > Acrylic box
- To understand the following:
 - > Design and manufacturing technologies
 - > Assembly and installation issues
 - > Background suppression capabilities

• Water

- A MC simulation show that ~ 2m water, 1500 20" PMT is good enough
- Top VETO
 - ➡ Fully or partially covered
 - ➡ Options:
 - ✓ **RPC**
 - ✓ Plastic scintillator
 - ✓ Liquid scintillator

New site: Kaiping county, Jiangmen city

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	running	planned	approved	Construction	construction
power/GW	17.4	17.4	17.4	17.4	18.4
Curre	nt site	entire terms of the second sec	住民 で、まやHiti たいで、 ひまいの の していていていていていていていていていていていていていていていていていていてい	revious site Huizhou a Bay	Kitier Lufeng

Site selection

- Experimental hall selected
- Preliminary geological survey:
 - ➡ Review held on Dec. 17, 2012
 - ⇒ No show-stoppers
- Detailed geological survey to be started this month

Construction plans

Two options considered

- \Rightarrow Rails(40%, 1100m) + vertical shaft(600m)
- \Rightarrow Rails(40%, 1100m) + horizontal tunnel(6600m)

Conceptual design completed. Review held on Dec.17, 2012.

- ⇒ Rails+vertical shaft is chosen for cost and schedule reasons
- \Rightarrow No show-stoppers

Experimental hall

Preliminary study shows that:
 Stability of the hall is not a problem
 Total time needed for the civil construction is 3 years

Brief schedule

- Civil preparation: 2013-2014
- Civil construction: 2014-2017
- Detector R&D: 2013-2016
- Detector component production: 2016-2017
- PMT production: 2016-2019
- Detector assembly & installation: 2018-2019
- Filling & data taking: 2020

After a number of reviews, we are approved by the CAS(~ CD1)

- "Daya Bay II" is a project with a very rich and interesting physics program
- Although challenging, initial study shows that it is not impossible
- A few R&D efforts already started, more will come
- Detector design and civil design has been started
- Good support from the local government & the Chinese funding agencies

Welcome collaborators