Pattern recognition techniques to reduce backgrounds in the search for the ¹³⁶Xe ββ0v with gaseous TPCs

3

F.J. Iguaz University of Zaragoza / NEXT Low Radioactive Techniques 2013 Gran Sasso, Italy, 10th April 2013

iguaz@unizar.es

Outline

R Motivation.

Discrimination algorithms based on Graph Theory.
Background reduction in LD & HDXe.
Conclusions and prospects.

Motivation: Pattern recognition techniques in ββ0v decay experiments of ¹³⁶Xe

- \bigcirc ββ0ν decay: neutrino mass & Majorana.
- Calorimeter detection with HP Xenon: natural abundance, nuclear factors, energy resolution and event's topology.
- Background reduction techniques have been widely treated in other approaches like pulse shape analysis in Ge detectors.
- № In HPXe, Gothard collaboration studied the event's topology and described some discrimination parameters.

Full simulation of the HPXe approach with a 3D event reconstruction & automated discrimination algorithms.

120

The simulation chain

The geometry implemented in Geant4

- G Copper made, 3 cm thickness.
- Cos Length 1.5 m, diameter 1.6 m
- ௸ Field cage & cathode:
 - 🛯 Teflon as insulator.
 - G Copper rings embedded.
 - 🛚 Copper cathode.
- Readout:
 - Surface contamination.
 - \bigcirc 2D readout (3D pixel size of 1 cm³).
- R Fiducial volume:
 - 🕼 Length 1.5 m, diameter 1.38 m.
 - 🗷 Xenon gas at 10 bar. Mass of 124 kg.
 - 🛯 Low & High Diffusion Xenon cases.

Expected backgrounds in the RoI

- \bigcirc RoI: 2400-2500 keV (1% FWHM at Q_{ββ}= 2458 keV).
- ← Two neutrinos mode: for a 3% FWHM, level < 10⁻⁶ keV⁻¹ kg⁻¹ yr⁻¹.
- - **C3** ²³²Th decay chain: 208 Tl (γ 2614.5 keV + electrons).
 - ²³⁸U decay chain: ²¹⁴Bi (γ 2447 keV & βs 3272 & 824 keV).
 - ⁶⁰Co: γ s 1173 & 1332 keV & β 318 keV. Easily vetoed.
- R External:
 - Gamma flux produces 10^4 keV⁻¹ kg⁻¹ yr⁻¹ in absence of shielding.
 - With 25 cm of lead shielding, $< 10^{-4} \text{ keV}^{-1} \text{ kg}^{-1} \text{ yr}^{-1}$.
- - 137 Xe (67% β 4173 keV & 30% γ 455 keV) but neglectable activity.
- Real High energy photons by muons:
 - Low contribution (< 10⁻⁴ keV⁻¹ kg⁻¹ yr⁻¹) and they can be actively vetoed.

Topology of signals & expected background events in RoI

Expected signal

• **Two electrons** emitted from the same vertex and sharing a total energy of **2458 keV**.

Note that background events have...

- ... two or more conexions (or tracks)
- ²⁰⁸Tl: External or multi-Compton (2615 keV)
- ²¹⁴Bi: Compton of high energy gammas.
 - ... only one blob at both ends
- ²⁰⁸Tl: Photoelectric + bremmstrahlung photons.
- 214 Bi: Photoelectric of the 2448 keV γ -line.
 - ... deposit energy at the fiducial limits.

Discrimination methods

- The absence of energy deposits far from the main conexión/track.
- R The existence of two big charge accumulations at both ends.

Algorithms based on Graph Theory: conexions search

- Reach event is transformed to a graph.
- Real Pixels are identified with vertex & adjent pixels are linked by a segment.
- A classical method of Graph Theory is used to find tracks (components).

RED: ββ0v BLUE: ²⁰⁸T1, vessel. VIOLET: ²¹⁴Bi, vessel.

- A "one-track" condition rejects too many signals (only 62% fullfill it) due to x-ray emissions.
- Revents with another low energy track (< 100 keV) also accepted.

Algorithms based on Graph Theory: blob identification (I)

- Real Based on the method to find the longest track in a graph.
- - CS Two blobs (> 150 keV).
 - One blob and a normal pixel.
- Chosen the 1st track except if the 2nd track is 30% longer. Compromise to recognize:
 - Signals with 2 blobs & unbalanced energy sharing (1 blob).
 - Backgrounds: normally 1 blob but random energy deposits (δ-rays or bremsstrahlung photons) may create a fake blob at the main track.

²¹⁴Bi Vessel An extra fake blob is present Algorithms based on Graph Theory: blob identification (II)

- Distance between calculated and real blobs is < 2 pixel lengths for 80% cases.
- Real Background events may have fake blobs in the middle of the track. In those cases, the generated track-line will not cover the whole event.

Background reduction in HDXe (I)

					AF Fiducial vetoes			
Origin	Isotope	AF Track	AF Topolo	gy	Lateral	Bottom	Top	
Lateral vessel	$^{208}{ m Tl}$ $^{214}{ m Bi}$	7.0 ± 0.3 14.1 ± 0.5	41.9 ± 3.8 43.1 ± 2.7		68.9 ± 8.1 82.1 ± 6.4	100.0 ± 12.8 99.7 ±8.2	98.4 ± 12.6 99.0 ± 8.1	
Drift cage	$^{208}{ m Tl}$ $^{214}{ m Bi}$	4.8 ± 0.1 41.9 ± 0.7	43.5 ± 2.0 39.4 ± 1.0		33.9 ± 2.6 12.7 ± 0.8	97.8 ± 9.3 99.6 ± 8.8	97.7 ± 9.4 98.1 ± 8.7	
Readout	$^{208}{ m Tl}$ $^{214}{ m Bi}$	3.2 ± 0.1 51.6 \pm 0.5	40.7 ± 2.6 36.6 ± 0.6		90.8 ± 7.1 88.6 ± 1.7	$16.8 \pm 2.5 \\ 0.4 \pm 0.0$	100.0 ± 19.4 100.0 ± 32.4	
Cathode	$^{208}{ m Tl}$ $^{214}{ m Bi}$	3.8 ± 0.1 65.7 ± 1.1	56.9 ± 3.2 34.9 ± 0.4		80.0 ± 5.3 76.6±1.5	$\begin{array}{r} 100.0 \ \pm 7.0 \\ 100.0 \ \pm 2.0 \end{array}$	$\begin{array}{c} 19.1 \ \pm 2.4 \\ 0.6 \ \pm 0.1 \end{array}$	

A 40% signal efficiency kept in this study. Note that the geometrical efficiency is already 70% due to deposits near the walls and bremsstrahlung emissions.

- Track criterium is more powerfull for inner ²⁰⁸Tl contaminations than external.
- CR Track criterium is less effective for ²¹⁴Bi events (few multicompton events) and less for inner components (β-emission 3272 keV, later rejected by fiducial veto).
- \sim The efficiency of the topology criterium is low (40%). See later...
- Fiducial criteria mainly rejects cathode & readout events (better ²¹⁴Bi than ²⁰⁸Tl).

Background reduction in HDXe (II)

- A 40% signal efficiency kept in this study. Note that the geometrical efficiency is already 70% due to deposits near the walls and bremsstrahlung emissions.
- CR Track criterium is less effective for ²¹⁴Bi events (few multicompton events) and less for inner components (β-emission 3272 keV, later rejected by fiducial veto).
- \sim The efficiency of the topology criterium is low (40%). See later...
- ← Fiducial criteria mainly rejects cathode & readout events (better ²¹⁴Bi than ²⁰⁸Tl).

Background reduction in LDXe

		r	1 1	1	AF Fiducial vetoes			
Origin	Isotope	AF Track	AF Topolo	gy	Lateral	Bottom	Top	
Lateral vessel Drift cage Readout	${}^{208}\text{Tl} \\ {}^{214}\text{Bi} \\ {}^{208}\text{Tl} \\ {}^{214}\text{Bi} \\ {}^{208}\text{Tl} \\ {}^{214}\text{Bi} \\ {}^{214}Bi$	$7.1\pm0.3 \\ 16.0\pm0.6 \\ 4.4\pm0.2 \\ 42.1\pm0.4 \\ 2.4\pm0.1 \\ 37.2\pm0.5$	$11.7\pm1.6 \\ 12.6\pm1.2 \\ 14.7\pm1.6 \\ 10.6\pm0.2 \\ 23.9\pm2.2 \\ 30.2\pm0.8$		$\begin{array}{c} 83.1 \pm 16.1 \\ 93.4 \pm 12.2 \\ 64.9 \pm 10.7 \\ 19.8 \pm 1.1 \\ 92.8 \pm 10.8 \\ 89.8 \pm 2.9 \end{array}$	$100.0\pm 20.2 \\99.1\pm 13.2 \\100.0\pm 18.1 \\99.3 \pm 6.9 \\14.9 \pm 3.5 \\0.2 \pm 0.1$	98.0 ± 19.9 100.0 ± 13.4 96.7 ± 17.7 98.5 ± 6.9 100.0 ± 30.9 100.0 ± 81.6	
Cathode	$^{208}{ m Tl}$ $^{214}{ m Bi}$	4.8 ± 0.1 57.4 ± 0.6	18.0 ± 1.4 26.9 ± 0.5		93.6 ± 9.4 83.6 ± 1.9	100.0 ± 10.2 100.0 ± 2.4	$\begin{array}{c} 24.1 \ \pm 4.0 \\ 0.3 \ \pm 0.1 \end{array}$	

- The rest of criteria show the same efficiency as in the HDXe case.

Still space for improvements...

- Several changes made: track length, number of blob candidates, charge determination...
- CR Efficiency better than Gothard (6.0% vs 8.6%) if the track criterium is worsen ~20-30%.

Conclusions and prospects

- Complete simulation of a HPXe TPC with a pixelized readout for ββ0ν made.
- Q Using the event's topology, two key signatures (a single track & one blob at both ends) have been identified to select signals from backgrounds.
- Two pattern recognition algorithms based on Graph Theory have been created for searching the components & the possible blobs, with good results.

Results

- Fixing a 40% efficiency, track criterium rejects mainly ²⁰⁸Tl events (4.8 7.1% efficiency), as events in the RoI suffer several physical processes. It rejects maximum 80% of ²¹⁴Bi events (mainly photoelectric of the 2547 keV γ-line).
- The efficiency of the topology criterium is 12% in LDXe near the 8.6% given by Gothard. Still space for further improvements. A factor 3 worse for HDXe.
- Real of the second seco

Prospects

- Other TPC features to be studied: pressure, pixel size & 2D pixelized readout.

Physical processes suffered by ²⁰⁸Tl to deposit its energy in the RoI

- 1) Compton at the external volume => γ of less energy that is photoabsorbed or suffers a Compton process at the target.
- 2) Multi-Compton at the target with energy loss by low energy γ s.
- 3) Photoelectric at the target with the emission of bremsstrahlung photons that escape from the TPC.

Notes:

- ✤ 1 & 2 are multitrack.
- ✤ 3 is single track but only 1 blob.
- ◆ 1 & 2 are more probable by emissions near the target.

The method to find the two longest track-lines in detail

- Real Based on the method to find the longest track in a graph.
- 1) Pixels with little charge are removed.
- 2) Pixels are linked by segments.
- 3) Big charge depositions (> 150 keV) are identified as blob candidates.
- 4) Found the longest track between blob candidates and the longest between one blob candidate & a normal pixel.
- 5) If 2^{nd} is 30% longer, it is kept. If not, the 1^{st} .

Signal efficiency

			Eff. Fiducial vetoes			
Isotope	Eff. Track	Eff. Topology	Lateral	Bottom	Top	

 88.5 ± 0.5 99.1 ± 0.6

 98.6 ± 0.6

 85.4 ± 0.5

 \bigcirc Final efficiency has been fixed to 40% for comparison.

 77.5 ± 0.4

Origin

Target

 136 Xe

Background reduction for the readout

- [∞] ²⁰⁸Tl: little background reduction.

Comparison with Gothard analysis

- α TPC: Xe-CF4, 5 bar, XY wires (2D readout), 168 channels, 6.8 mm pitch, ε_{geom} = 29.7%.
- \propto γ sources calibration: ¹³⁷Cs, ²²Na, ⁸⁸Y, ²³²Th.
- R Blobs are located by eye one-by-one.
- Real Blobs charge is defined using both 2D views of an events.
- Result by calibrations: **1.4**% of efficiency.
- Result by real data: **8.6**% of efficiency.
- \bigcirc Better result presented here (12%).
- Reven if a 3D readout is used, not so good result as pressure is 10 bar & pitch is 1 cm.

Table 1

Data reduction and inefficiency factors for various cuts in the analysis procedures

Cuts	Data	Inefficiency $(\tilde{\eta})$	
	reduction	MM	RHC
On line analysis			
Hardware veto	0.5	10^{-5}	10^{-5}
Energy > 600 keV	0.22	0	0
Software	0.46	$< 10^{-3}$	$< 10^{-3}$
Net reduction	0.051	-	-
Off-line analysis			
Energy $> 1600 \text{ keV}$	0.060	0	0
Delayed coincidence	0.98	0	0
Events not fully contained ^a	0.93	0.0032	0.0032
"Alpha-like" events	0.98	0.0073	0.0073
Blob count	0.88	-	-
Multiple events	0.95	0.0053	0.0053
Single electron	0.20	0.062	0.054
Net reduction	0.009	-	-
Off-line scanning			
Energy > 2000 keV	0.13	0	0
Events not fully contained a	0.82	0	0
Isolated charge > 100 keV	0.76	0.072	0.072
One end with $Q < 30^{\text{ b}}$	0.086		
Energy distribution		0.052	0.202
Detector response		0.067	0.067
Net reduction	0.0070	-	-
Total reduction in data	3.2×10^{-6}	-	-
Net analysis efficiency			
$= \prod_{i} (1 - \tilde{\eta}_i)$	-	0.76	0.65

^a Detector efficiency not included.

^b Same inefficiency factor.

Example of low diffusion mixtures: Xe-TMA

- **3** Xe: 0.14 cm/μs
- **C3** Xe-2%TMA: 1.36 cm/μs
- ₩ HDXe (pure xenon):
 - **G** Transversal: 630 μm/cm^{0.5}
 - C3 Longitudinal: 250 μm/cm^{0.5}
- \bigcirc LDXe (Xe+2%TMA):
 - ^{CS} Transversal: 140 μm/cm^{0.5}
 - C3 Longitudinal: 170 μm/cm^{0.5}

Xe TPC experiments taking data

Comparison with KK claim

Gain & energy resolution of MM in Xe & Xe-TMA

Gain at Xe-2%TMA Energy resolution at 22.1 keV 35 1 bar 2 bar Energy Resolution (%FWHM) 🔻 3 bar 0 4 bar + 5 bar Xenon 10^{3} 🛦 6 baı 25 7 bar 8 bar Gain 🔶 9 bar 10 bar 15 Xe-2%TMA 10^{2} 10 0 60 70 80 90 Amplification field (kV/cm) 50 110 40 100 8 10 4 Pressure (bar)

S. Cebrian, JINST 8

(2013) P01012 D.C. Herrera,

arXiv:1303.5790

- Study of Xe-TMA mixtures at 1-10 bar for Micromegas detector (charge readout).
- Optimum %TMA between 1.5 & 2.
- C R The maximum gain improves x3 and the energy resolution a factor x2 (3) at 22 keV at 1 (10) bar, in comparison to pure Xenon.
- Real Further study for light readout (PMTs) being made by LBNL