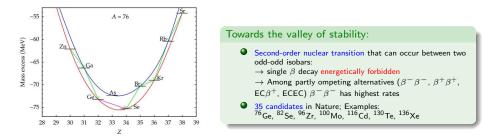
GERDA Phase II detectors: behind the production and characterisation at low background conditions

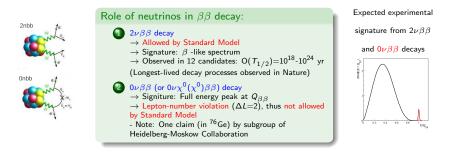
Werner Maneschg

- on behalf of the GERDA collaboration -

Max-Planck-Institut für Kernphysik, Heidelberg

Low Radioactivity Techniques Workshop - LRT2013 April 10-12, 2013, LNGS, Italy





GERDA Phase II detectors

Searching for the rare neutrinoless double beta decay

The low background experiment GERDA

Setup and background shielding (1):

Overburden of 3500 m w.e. at Hall A of LNGS → Reduction of cosmic-muon flux by six orders of magn. down to ~1 μ/(m² ⋅ h) (PB)

Water tank and plastic scintillator

- R=5 m, h=9.0 m, 590 m³ ultra-pure water
- \rightarrow water acts as neutron moderator/absorber (PB)
- \rightarrow both components act as muon Cherenkov veto (AB)

Large volume cryostat:

- R=2 m, h=5.9 m, 64 m³ LAr
- \rightarrow LAr acts as cooling medium for diodes
- \rightarrow LAr attenuates external radiation (PB)
- \rightarrow LAr scintillation light planned to be used as a background rejection (AB)

GERmanium Detector Array:

- 1-string and 3-string arms, each string with 3 detectors (Phase I)
- Up to \sim 12 strings (depending on final design for Phase II)
- Handling of diodes within a glovebox flushed mit N2 gas (PB)
- Operating bare diodes in LAr using low-mass holders (PB)
- $\rightarrow 0 \nu \beta \beta$ source = Detector, enriched in ⁷⁶Ge
- coincidence mode and pulse shape tracing (AB)

PB = passive background rejectionAB = active background rejection

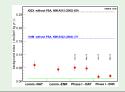
All construction materials close to detectors screened for radiopurity

GERDA Phase II detectors

GERDA Phase I and II

GERDA Phase I (November 2011 - summer 2013) (1):

- Technology: Refurbished coaxial HPGe detectors, 6 ⁷⁶Ge enriched (HdM, IGEX) for ~15 kg, 3 natural (GTF)
- Since July 2012: added 5 enriched Phase II BEGe prototype detectors for ~3.5 kg
- Energy resolution of coaxial diodes: 4.5-5.1 keV (FWHM) at 2614.5 keV
- Background index (BI)*: ~0.02 cts/(keV·kg·yr) → Talk by N. Becerici-Schmitt (April 11, Session 6)
 - * BI defined in region: Q_{etaeta} of 76 Ge (2039 keV) \pm 100 keV (minus 40 keV blinded region)


String with coaxial HPGe diodes

String with BEGe diodes

BI of Phase I (1)

< A

GERDA Phase II (planned start within 2013):

Technology: additional 25 enriched Phase II BEGe detectors for ~17 kg:
 → Expected better sensitivity due to: larger target mass, better energy resolution, and enhanced pulse shape performance for background rejection

Envisioned BI in ROI: ≤0.001 cts/(keV·kg·yr)

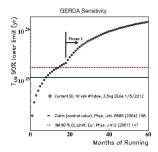
W. Maneschg (MPI-K)

GERDA Phase II detectors

LNGS, April 10, 2013 4 / 21

GERDA Phase II: Towards a higher sensitivity

Sensitivity expressed in terms of half-life


 $T_{1/2} \propto f_{76} \cdot \epsilon \cdot \sqrt{rac{M \cdot T}{\Delta E \cdot B}}, \hspace{0.2cm} (ext{if background is present})$

where:

- f_{76} : Abundance of $0\nu\beta\beta$ candidate isotope \rightarrow Enrichment
- ϵ: Efficiency
 → precise characterisation via dedicated acceptance
 tests
- M: Mass
 Increasing target mass
- T: DAQ livetime → high duty cycle
- ▲ E: Energy resolution
 → Novel detector technology with improved resolution
 →
- B: Background: → Keep exposure to cosmogenic radiation low
 - \rightarrow Apply pulse shape discrimination techniques to reject background events

 \rightarrow Read-out LAr scintillation light to discriminate background events

Expected sensitivity of GERDA Phase I-II

イロト 人間ト イヨト イヨト

3

Production of GERDA Phase II detectors: Overview

From enrichment to diode operation

- Germanium enriched at 87% in ⁷⁶Ge at Electrochemical Plant, Zelenogorsk, Krasnojarsk, Russia (delivered in form of GeO₂ powder)
- Purification to 6N grade material via zone-refinement at the high purity metals producer PPM GmbH in Langelsheim, Germany
- 3 Crystal pulling at Canberra Industries Inc., Oak Ridge, USA
- BEGe Diode production at Canberra Semiconductors NV, Olen, Belgium; Characterisation at HADES underground laboratory, Mol, Belgium;

Contacting at Canberra, Olen

Delivery to GERDA experimental site

Crystal slice before diode conversion

< ロ > < 回 > < 回 > < 回 > < 回

Production of GERDA Phase II detectors: Enrichment and mass yield

$$T_{1/2} \propto f_{76} \cdot \epsilon \cdot \sqrt{rac{M \cdot T}{\Delta E \cdot B}}$$

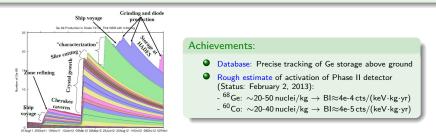
Enrichment fraction f_{Ge} (1):

Isotope	⁷⁰ Ge	⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁶ Ge	Mean
Isot. mass (g/mole)	μ^1 :	μ^{2} :	μ^3 :	μ^{4} :	μ ⁵ :	nuc.
	69.92	71.92	72.92	73.92	75.92	mass
Isot. abundance of:	a ₀ ¹ :	a ₀ ² :	a ₀ 3:	a ₀ 4:	a ₀ ⁵ :	μ ₀ :
^{nat} Ge (2003)	0.204(2)	0.273(3)	0.078(1)	0.367(2)	0.078(1)	72.70
Isot. abundance of:	a ¹ :	a ² :	a ³ :	a ⁴ :	a ⁵ :	μ :
HDM-ANG1, ^{enr} Ge	0.0031(2)	0.0046(19)	0.0025(8)	0.131(24)	0.859(29)	75.68
IGEX, ^{enr} Ge	0.0044(1)	0.0060(1)	0.0016(1)	0.1329(1)	0.8551(10)	75.60
BEGe, enr Ge	0.0002(1)	0.0007(3)	0.0016(2)	0.124(4)	0.874(5)	75.77

Mass yield:

Germanium	Mass [kg]	Fraction relative to 1. and 2. [%]
 GeO₂ powder after enrichment 	37.5	100
2. Purified Ge for crystal pulling	35.5	95; 100
Cut crystal slices	25.2	67; 71
4. 30 grinded and lapped crystal slices	20.8	55; 59
5. 30 crystals converted into operational diodes	~ 20.2	54; 57

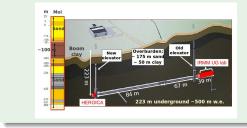
Э


<ロ> (日) (日) (日) (日) (日)

Production of GERDA Phase II detectors: Cosmic activation

$$T_{1/2} \propto f_{76} \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}$$

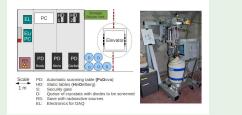
Challenging: Minimisation of exposure to cosmic radiation


- Cosmogenically-induced radioisotopes mimic $0\nu\beta\beta$ events
- Main candidates:
 - 68 Ge: au=270.95 d, Saturation at sea level: \sim 20000 nuclei/kg
 - ⁶⁰Co: τ =5.27 y, Saturation at sea level: ~800 nuclei/kg
- Counteractions:
 - Minimize exposure during transportation: bottom of container ship, transport container filled with water on truck
 - Underground storage close to manufacturing sites (Oak Ridge-) Cherokee Caverns, Olen-) HADES UG lab)
 - Characterisation of germanium in HADES UG lab (see next slide)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

GERDA Phase II detectors: characterisation in HADES

HADES underground laboratory



HADES (High Activity Disposal Experimental Site):

 \rightarrow Research infrastructure for disposal of nuclear waste in clay environment located at the Belgian Nuclear Reseach Center SCK-CEN in Mol

 Only 25 km from diode manufacturer Canberra in Olen

Diode characterisation at HEROICA site in HADES

- HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances): (2) → A facility for fast and precise characterisation of Ge detectors in vacuum cryostat
- Fully equipped with DAQ (MCA, FADC), HV supply, network, large radioactive source set
- Fast screening capability: 2 detectors/week → Poster by E. Andreotti (April
 - 11, Poster Session)

W. Maneschg (MPI-K)

GERDA Phase II detectors

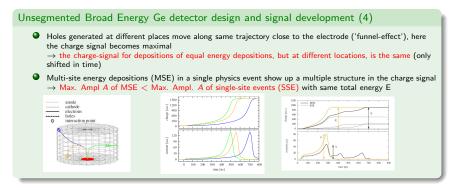
LNGS, April 10, 2013 9 / 21

GERDA Phase II detector tests: characterisation protocol

Parameters	Source	Collimated	Determination of:	DAQ Used
Mass and dimensions	-	-	Check manufacturer values	—
	Am scan	У	Check: Diode pos. in cryostat	MCA
Operational Param.	Co	n	Energy resolution	MCA/FADC
	Co HV scan	n	Depletion voltage	MCA/FADC
		n	E-res+rate+LC fnc. Of HV	MCA/FADC
		n	Monitoring of LC	USB Logger
	Th+Am+Co	n	Linearity of Ene-scale	FADC
	Co/Th/pulser	n	Stability in time	MCA/FADC
DL/AV	Am	n	Averaged DL+AV	MCA/FADC
·	Ba	n	Averaged DL+AV	MCA/FADC
	Am scan	У	Charge collection eff.	MCA
		y	Position-dep. DL	MCA
	Co	n	AV; AV+transition reg.	MCA/FADC
	Co, diff. Trg.rates	n	Deadtime calc.	MCA/FADC
PSA	Th	n	PSD efficiency	FADC
	Am/Th	У	Position-dep. Of A/E; risetime	FADC
	Am scans	у	Surface and crystal effects	FADC
	Th, thermal cycles	n;y	Time-Stability of A/E	FADC
Bkgd	- '	_	Background	MCA/FADC

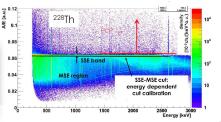
Advanced BEGe test protocol

- Mainly adressed parameters: background rejection efficiency via pulse shape analysis (B), dead layer (DL) and active volume (AV) (included in the efficiency ε), energy resolution (ΔE), operational voltage, stability in time
- Test protocol based on investigations with BEGe diodes that were obtained from the ⁷⁶Ge -depleted left-over material from the enrichment process. (3)


W. Maneschg (MPI-K)

GERDA Phase II detectors

LNGS, April 10, 2013 1

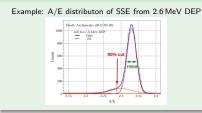

10 / 21

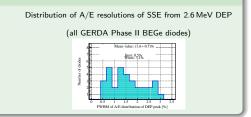
GERDA Phase II detectors: Pulse shape performance

Method: Pulse shape discrimination

- $0\nu\beta\beta$ events are SSE, while most background events are MSE
 - \rightarrow Calibrate diode with ²²⁸Th source
 - \rightarrow Calculate A and E, plot A/E vs. E:
 - 1592 keV: 2.6 MeV Double escape peak (DEP) is SSE
 - 2615 keV and Compton cont.: typical MSE
 - \rightarrow Use DEP distribution to define a SSE-MSE cut

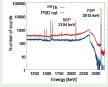
W. Maneschg (MPI-K)


GERDA Phase II detectors


LNGS, April 10, 2013 11 / 21

GERDA Phase II detectors: Pulse shape analysis results

$$T_{1/2} \propto f_{76} \cdot \epsilon \cdot \sqrt{rac{M \cdot T}{\Delta E \cdot B}}$$


Definition of MSE-SSE pulse shape cut

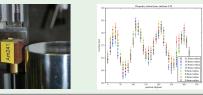
MSE-SSE cut subtraction and efficiencies in vacuum

Apply pulse shape cut and subtract MSE from energy spectrum

Averaged discrimination eff. (7 Phase II BEGe's)

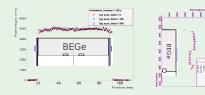
ROI	Type	Suppression	
DEP at 1.592 MeV		(90±1)%	
FEP at 1.620 MeV			
FEP at 2.615 MeV	MSE, peak	$(13\pm 5)\%$	
(2004-2074) keV	MSE, cont.	(39±5)%	
(1989-2089) keV	MSE, cont.	(39±5)%	

W. Maneschg (MPI-K)


GERDA Phase II detectors

LNGS, April 10, 2013 12 / 21

GERDA Phase II detector: ²⁴¹Am surface scans


Perform: Fine-grained surface scans (top and lateral) with collimated 5 MBq ²⁴¹Am sources Goal: better detector response knowledge \rightarrow improved sensitivity $T_{1/2}$ by reduction of systematics

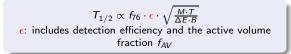
Information from pulse shape analysis

- Lateral circular scans: up to ~290 points
- Top circular scans: up to ~230 points
- Observe pulse risetime dependency from fcc-type crystal lattice → Study slow pulses from transition layer between inactive surface and active bulk
 - region (see next slide)

Information from count rates

- Top and lateral scans in one direction
- Measure position of diode in vacuum cryostat

(\rightarrow cross-check of manufacturer data; input for MC)

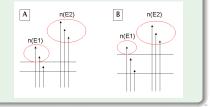

 Measure stability of count rate, → homogeneity of the dead layer (input for MC, see next slide)

W. Maneschg (MPI-K)

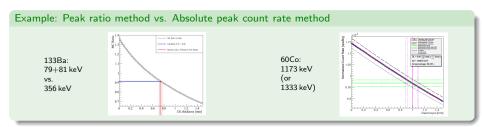
GERDA Phase II detectors

LNGS, April 10, 2013 13 / 21

GERDA Phase II detector: Active Volume and Dead Layer



Sources probing (in)active regions of Ge diodes



Methods:

- Peak ratio method:
 - Estimate $R_{exp}=n(E1)/n(E2)$ for two given γ -lines of the same isotope;
 - activity independent measurement !
 - Compare with simulated Rmc for variable DL thickness
- Absolute peak count rate method:
 - Estimate $\epsilon_{exp} = n_{emit}(E)/n_{absorb}(E)$ for a given energy; for $n_{emit}(E)$ source activity has to be well known !
 - Compare with simulated ϵ_{mc} for variable DL thickness

GERDA Phase II detector: active volume and dead layer results

Investigation of systematics for a precise determination of DL/AV

- Diode: dimensions, off-axis position, distance to endcap of cryostat
- Cryostat: material/thickness of endcap as well of detector cup
- Source: distance, encapsulation material/thickness, size of active element, activity
- MC (Geant4): tracking uncertainty, gamma line probability, angular correlations
- DAQ performance: cross-check with different DAQ systems, dead time calc., stability in time

Preliminary results (7 enr BEGe):

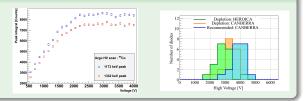
- Dead layer thickness: (0.7-1.2) mm (in agreement with manufacturer)
- Active volume fraction f_{AV}: (86-92)%
 - \rightarrow Final goal: full agreement between different methods AND uncertainty Δf_{AV} at few % level

W. Maneschg (MPI-K)

GERDA Phase II detectors

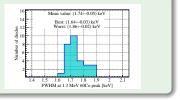
LNGS, April 10, 2013 15 / 21

< 注→ < 注→


< 口 > < 同 >

GERDA Phase II detector results: depletion voltage and energy resolution

 $T_{1/2} \propto f_{76} \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta F \cdot B}}$


Depletion voltages:

- High voltage scans with ⁶⁰Co source for monitoring of: peak count rate, peak position, energy resolution, leakage current
- Depletion voltage V_D:
 - Criterion: count rate saturates
 - $V_D \approx$ recommended operational voltage 500 V

Energy resolution ΔE :

- HEROICA values: in very good agreement with manufacturer's values
- 29/30 diodes have excellent ΔE; (ΔE)=1.74 keV at 1.3 MeV ⁶⁰Co peak (in vacuum)
- BEGe vs. coaxial HPGe diodes: ~3.2 keV vs. ~4.7 keV at 2.6 MeV (in Liquid Argon)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

GERDA Phase II detectors: Summary

- Large effort to suppress cosmic activation during transport and all production steps
- Screening facility HEROICA: fast, precise and detailed characterisation of all diodes

Performance of GERDA Phase II detectors

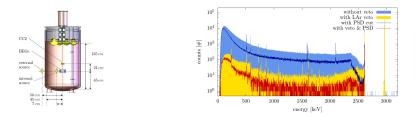
- Novel detector technology: enhanced pulse shape discrimination of background events
- Active volume fractions f_{AV} : known at a good precision level
- Excellent energy resolution; almost $2 \times$ better than coaxial HPGe diodes
- Study of other parameters for better detector understanding ongoing

 \rightarrow All these ingredients will contribute to an improved sensitivity in the GERDA experiment!

イロト 人間ト イヨト イヨト

BACK-UP

W. Maneschg (MPI-K)


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

GERDA Phase II: Light instrumentation for background reduction

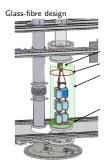
$$T_{1/2} \propto f_{76} \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}$$

Goal:

- Operate germanium diodes in coincidence with scintillation light instrumentation in liquid argon (\u03c6=128 nm) in order to reject external background
- R&D within LArGe test facility at LNGS

Results for ⁶⁰Co and ²²⁸Th source (6)

source	position	LAr Veto	PSD	total
⁶⁰ Co	int	27±2	76±9	3900±1300
²²⁸ Th	ext	25±1	2.8 ± 0.1	129±15
	int	$1180 {\pm} 250$	2.4 ± 0.1	5200 ± 1300


GERDA Phase II: Light instrumentation options

Glass-fibre teststand

Options

- PMT light instrumentation (based on LArGe experience)
 - Wavelength-shifter glass-fibres
 - Large area avalanche photodiodes or UV sensitive SiPMs on custom-made low-activity substrates

 \rightarrow Most advanced solution: Combination of 1. and 2. option

W. Maneschg (MPI-K)

GERDA Phase II detectors

LNGS, April 10, 2013 20 / 21

< ロ > < 同 > < 回 > < 回 > < 回

Bibliography and further reading

M. Agostini et al., Isotopically modified Ge detectors for GERDA: from production to operation; arXiv:1303.6768 (physics.ins-det), accept. for publ. JINST

M. Agostini et al., Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in ⁷⁶Ge, JINST 6, P03005, 2011

E. Andreotti et al., Production and characterisation of ⁷⁶Ge enriched BEGe prototype detectors for GERDA Phase II, paper in preparation

M. Heisel, Dissertation 2011, University Heidelberg