

Strategy of HPGe screening measurements in the SuperNEMO experiment

Frédéric PERROT (fperrot@cenbg.in2p3.fr) on behalf of the SuperNEMO collaboration

Full SuperNEMO experiment (22 modules)

- Tracko-calo technique
- Source: 100 kg of 82Se
- $T_{1/2}(\beta\beta0\nu) > 10^{26} y$
- $< m_v > < 40-110 \text{ meV}$

SuperNEMO Demonstrator (1st module)

Radiopurity requirements:

- Source foil : $A(^{214}Bi) < 10\mu Bq/kg$, $A(^{208}Tl) < 2\mu Bq/kg$ (BiPo3 detector)
- Radiopurity of the gas : $A(^{222}Rn) < 0.15 \text{ mBq/m}^3$ (Rn strategy)
- Radiopurity of the materials: low-backgound gamma spectrometry screening (High Purity Germanium, HPGe)

PRISNA platform (Bordeaux): a facility dedicated to a γ radiopurity pre-screening of the materials

Pool of HPGe detectors:

- 2 coaxial-type for big samples (few 100cm^3) and Ey>100 keV
- 2 well-type for small samples (few cm³) and E γ >40 keV

Passive + active (µ veto) shieldings

LSM platform (Modane): a facility dedicated to an ultra-low y radiopurity screening of the materials

Pool of HPGe detectors:

- 3 coaxial-type for big samples (few 1000cm³) and Eγ>100 keV
- •1 planar-type for thin samples (few mm) and Ey>20 keV

Passive shieldings (Cu + Pb)

T	Background	Detection limit			
Type	(counts/mn)	(mBq/kg)			
	[30-3000 keV]	²¹⁴ Bi	²⁰⁸ T1	²¹⁰ Pb	
		(352 keV)	(238 keV)	(46 keV)	
Coaxial	4	< 25a	< 10 ^a	_	
Well	10	<60 ^b	<20 ^b	<200b	

Best sensitivity achieved: 10 mBq/kg

Typical sensitivity								
Type	Background (counts/mn)	Detection limit (mBq/kg)						
	[30-3000 keV]	²¹⁴ Bi (352 keV)	²⁰⁸ Tl (238 keV)	²¹⁰ Pb (46 keV)				
Coaxial	0.16	< 0.2a	< 0.07a	_				
Planar	0.11*	<0.7a	<0.25 ^a	<7a				
a = 1kg of sample and 30 days of measurement $* = for [20-1500 keV]$								

Best sensitivity achieved: 0.07 mBq/kg

Radiopurity strategy for the SuperNEMO demonstrator module

Ultra-critical materials

82Se source foils

• HPGe screening of the ⁸²Se foils after their production at a level of 0.1-1 mBq/kg \rightarrow LSM

Delrin spool for ⁸²Se foil transportation and HPGe measurements

• Final sensitivity achieved with the BiPo3 detector at the level of $2-10 \mu Bq/kg$ for ^{214}Bi and ^{208}Tl

Critical materials

Rn barrier « Less* » critical materials

Tracker + source frame

- HPGe screening of the materials in direct contact with the tracker gas at a level of 0.1-1 mBq/kg \rightarrow LSM
- Cross-check of possible surface contamination with a Rn emanation chamber dedicated to large samples
- Final Rn emanation measurement will be performed for all the tracker module with the Rn concentration line (Goal : $A(^{222}Rn) < 0.15 \text{ mBq/m}^3$)

Calorimeter + surroundings

- HPGe pre-screening of the materials at a level of 10-100 mBq/kg \rightarrow **PRISNA** \rightarrow enough for materials with low mass or far from the tracker (resistances for HV divider, connectors for cables...)
- HPGe screening of the materials at a level of 1-10 mBq/kg \rightarrow LSM
- → required for materials with high mass (plastic scintillors, PMT, iron frame...)

*Other possible background: alphainduced neutrons in low Z materials

Example: glass of PMT as a « reference » material

- SuperNEMO demonstrator : two main calorimeter walls
- Total: 520 plastic scintillators coupled to 8" PMT
- → Glass of PMT : main issue for radiopurity concern

Radiopurity budget of the best glass provided by Hamamatsu

			<u> </u>			
Nu	mber of	Mass of	40 K	²¹⁴ Bi	²⁰⁸ T1	
8	'' PMT	glass (kg)	(Bq)	(Bq)	(Bq)	
1	PMT	0.96	0.580	0.096	0.019	
52	20 PMT	500	302	50	10	

→ need to improve the radiopurity of the glass by a

factor 2 to fullfil the SuperNEMO requirements Radiopurity requirement for the other materials:

their total activity does not exceed 10% of the glass activity of the 520 x 8" Hamamatsu PMT