

INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science - MPD program, co-financed by the European Union within the European Regional Development Fund

²²²Rn daughters in liquid nitrogen

Krzysztof Pelczar M. Smoluchowski Institute of Physics Jagiellonian University, Cracow

> LRT 2013 LNGS, Assergi, Italy

Outline

- Motivation ²²²Rn induced background in cryoliquids
- Proposed model
- Experimental setup
- Results of α-activity measurements
- Summary

²²²Rn induced background in cryoliquids

- ²²⁶Ra present in most of the construction materials;
- Gaseous ²²²Rn emanation dissolves into the cryoliquids;
- Ionized decay products are subject to electric field, induced in the cryoliquid (e.g. drift chambers);
- Energy released in alpha, beta and gamma decays in ²²⁶Ra decay chain are above e.g. Q_{ββ} (neutrinoless double beta decay);
- Natural intrinsic source of background in majority of the low background experiments.

The model highlights

- Box model of germinate neutralization
 - Probability ε_c of the initial C_o charge survival is a function of external electric field strength E and type of ionizing decay
 - $-N_i$ is the number of electron-cation pairs produced within a box of dimensions a, α is the recombination coefficient, μ_{L} is the electron mobility
 - Values of ξ known from fits [J. Thomas et.al., Phys. Rev. A, 1987]:
 - $\xi_{\beta}E = 840 \text{ V/cm}$ for 364 keV electrons
 - $\xi_{\alpha}E = 470 \text{ kV/cm}$ (5.64 MeV alpha-decays) 50
- Bulk recombination on electronegative impurities;
- Changes of impurity \bullet concentration in time (in a long timescale) due to diffusion and adsorption.

 $\varepsilon_{C} = \frac{C}{C} = \frac{\ln(1+\xi)}{2}$

Experimental results (preliminary)

- The ion lifetime • parameters $(T_{max}$ for negative ions fixed to ²¹⁴Bi lifetime – fit results were always divergent);
- Systematical errors • originate from the ²²²Rn doping uncertainties. They are not discussed.
- Abundances [a.u.] of • ²²²Rn daughters on the surface of the Si-PIN detector;
- Amount of ²¹⁸Po is • consistent with 0.

	0→2 kV	2 →- 2 kV	-2→2 kV
ε _C (%)	47.1 ± 0.5	0.65 ± 0.02	55.6 ± 0.3
T ₀ (s)	5.9 ± 0.1	0.4 ± 0.1	0.098 ± 0.008
T _{max} (s)	21.6 ± 0.3	1188	9.56 ± 0.06
r (d⁻¹)	4.4 ± 0.2	11.8 ± 1.0	10.4 ± 0.2
lons	positive	neglike	positive

2→0 kV -2→2 kV $2\rightarrow -2 \text{ kV}$ ²¹⁸Po 0 ± 4 0 ± 0.7 0 ± 0.6 ²¹⁴Pb 0.1 ± 0.7 3 ± 5 0.5 ± 0.7 ²¹⁴Bi 9.4 ± 0.2 0.21 ± 0.05 2.00 ± 0.05 Bkg 0.11 ± 0.02 0 ± 0.009 0 ± 0.005

Summary

- We have observed positive and negative-like ions;
- Negative-like ions are probably formed as bigger compounds
 - Long ionic lifetime in technical grade cryoliquids;
- Positive ions exhibit long ionic lifetime possible source of background;
- Proposed semi-empirical model well describes results
 - Mobility of the ions not known precisely (assumed)
 - Germinate neutralization depends on the type of decay and external electric field strength;
- Further improvements
 - Direct measurements of ²¹⁸Po
 - Electric field modeling
 - Measurements in different cryoliquids (liquid argon, xenon)
 - Controlled purity
 - Dedicated measurements of mobilities.
- Thanks to Nikodem Frodyma for providing the data.

Backup slides

- The positive high voltage bias repels positive ions towards the Si-PIN detector, close to the ground potential
- The negative bias repels negativelike ions towards the detector

Backup slides – persistence of ions in cryoliquids

- In dense environments (liquefied gases used in low background experiments) the differences in energies required to free a bound electron ensures persistence of the ions.
- High purity of the liquids enhances the ionic lifetime and probably reduces chances to form negativelike compounds.

Atom	1 st IP [eV]	2 nd IP [eV]		
Rn	11	-		
Po	8.4	-		
Pb	7.4	15		
Bi	7.3	17		
Gap energy [eV]				
Ar	16	-		
N_2	15	-		
Kr	14	-		
Xe	12	-		

• IP – ionization potential

Backup slides – mobilities of ions in cryoliquids

- Mobilities of ²²²Rn daughters not known
 - A typical value of ²²⁶Th mobility in liquid argon (NBP) is 2 4 · 10⁻² mm²V⁻¹s⁻¹
 - [K. Wamba et. al., NIMA, 555 (2005), 205-210]
- Mobilities of impurities well known
 - Oxygen ions in liquid argon (NBP) 2.5 · 10⁻¹ mm²V⁻¹s⁻¹
 [B. Henson, Phys. Rev., 135, 4A (1964), 1002-1008]

Backup slides – impurities concentration

- Bulk recombination on electronegative impurities
 - [Y⁺] is the time dependant concentration of the ions.
- Concentration of impurities changes in time. Concentration [Z] is related to the ionic half-lifetime T via attachment rate k_Z: T(t) = ln2 k_Z[Z](t);
- Changes of impurity concentration [Z] in time (in a long timescale) as a limited growth function
 - Solution to a differential equation, where $x(t) \equiv T(t)/T_{max}$;
- The maximum concentration is limited by the total amount of ions dissolved in the liquid volume – minimum ionic lifetime T_0 ;
- The minimum concentration is limited by the diffusion and convection flows (mixing) – maximum ionic lifetime T_{max};
- Change rate r is related to the diffusion of the impurities – timescale order of hours;

$$\left[Y^+\right](t) = \left[Y^+\right]_0 e^{-k_Z[Z](t)t}$$

$$\frac{dx}{dt} = rx(1-x)$$

$$T(t) = \frac{T_0 T_{\max} e^{rt}}{T_{\max} + T_0 \left(e^{rt} - 1\right)}$$