Background Considerations for SuperCDMS

Jodi Cooley - SuperCDMS Southern Methodist University

SuperCDMS Collaboration

- California Inst
- Fermi Nationa
- Massachusetts
- * NIST
- Pacific Northv
- Queen's University
- * Santa Clara U
- SLAC/KIPAC
- Southern Methodist University*
- Stanford University

- California Institute of Technology
- Queen's University
- Southern Methodist University
- Texas A&M University
- Gel University of California, Berkeley
 - University of Evansville

- Accelerator Laboratory
- odist
- Y TANK
- Stanford University
 - Universidad Autónoma de Madrid

Fermi National

- Pacific Northwest National Laboratory
- **UF** University of Florida

- Massachusetts Institute of Technology
 SLAC / Kavli Institute for Particle Astrophysics and Cosmology
 Syracuse University
 - University of British Columbia
 - University of Colorado, Denver
 - Denver University of Minnesota
- olombia 1, Berkeley 1, Santa Barbara , Denver 2
- FT-UAM/CSIC and Universidad Autonoma de Madrid
- University of Minnesota

*The SMU SuperCDMS group is supported by the NSF under grant number 1151869.

2

Direct Detection Event Rates

- Elastic scattering of a WIMP deposits small amounts of energy into recoiling nucleus (~ few 10s of keV)
- Featureless exponential spectrum
- Expected rate:
 < 5 interaction per ton per day
 (3.8 x 10⁻⁴⁴ cm² for m_χ = 70 GeV)
- Background caused by the radioactivity of most materials is higher than this rate!

Challenges

- Clean materials
- shielding
- discrimination power
- Substantial Depth
 - neutrons look like WIMPS
- Long exposures
 - large masses, long term stablility

The Big Picture

Use a combination of **discrimination** and **shielding** to maintain a "< I event expected background" experiment with low temperature semiconductor detectors

Primary Backgrounds: Photons, Electrons and Neutrons.

Discrimination from measurements of ionization and phonon energy.

Keep backgrounds low as possible through shielding and material selection.

Depth is Important!

Shielding

Active Muon Veto:

rejects events from cosmic rays

CDMS active muon veto

Shielding - An Example

Active Muon Veto:

rejects events from cosmic rays

Pb: shielding from gammas resulting from radioactivity

Polyethyene: moderate neutrons produced from fission decays and from (α,n) interactions resulting from U/Th decays

CDMS - Layers of Polyethylene and Lead

Shielding

Active Muon Veto:

rejects events from cosmic rays

Pb: shielding from gammas resulting from radioactivity

Polyethyene: moderate neutrons produced from fission decays and from (α,n) interactions resulting from U/Th decays

CDMS - Top view of inner most shield layer

SuperCDMS at Soudan

- Currently operating 5 towers of of advanced iZIP detectors (~9 kg Ge) in the existing cryostat at the Soudan Underground Laboratory.
- After 3 years of operation, expected to improve sensitivity to spin-independent WIMP-nucleon interactions by a factor of ~10 over existing CDMS II results.

Installation complete Nov. 8, 2011. Operating with final detector settings since Mar. 2012.

The Detectors

- * 76 x 25 mm interleaved ZIP (iZIP) double sided detectors
 - * (2.5x thicker than CDMS II)
- Ionization electrodes are interleaved with narrow strips of phonon sensors.
 - Phonon sensors optimized to enhance phonon signal to noise ratio
- Optimized sensor layout
 - Each side has one outer channel to reject zero charge events and 3 inner channels to reject surface events.
- Ionization channels can be used to reject surface events

SuperCDMS iZIPs: Charge Signal

Bulk Events:

Equal but opposite ionization signal appears on both sides of detector (symmetric)

Surface Events:

Ionization signal appears on one detector side (asymmetric)

SuperCDMS iZIPs: Ionization Signal

Bulk Events:

Equal but opposite ionization signal appears on both sides of detector (symmetric)

Surface Events:

Ionization signal appears on one detector side (asymmetric)

SuperCDMS Soudan: ²¹⁰Pb Test

- March July 2012: ~65,000 electrons and ~15,000 ²⁰⁶Pb recoil surface event collected from ²¹⁰Pb source.
- 0 events leaking into the signal region (< 2.5 x 10⁻⁵ @90% C.L. misID)

- 63% fiducial volume (8-100 keVnr)
- Good enough for a 200 kg experiment run for 4 years at SNOLAB!

SuperCDMS iZIP: Phonon Signal

- * Phonon timing pulse information still possible.
 - * Surface electron vs bulk nuclear recoil event discrimination
- * PULSE SHAPE HAS NOT YET BEEN USED! (It's not needed.)

SuperCDMS SNOLAB: G2 Experiment at the Ladder Lab

SuperCDMS at SNOLAB

Planned Setup

- cryostat volume of up to 400 kg target
 - 200 kg experiment with sensitivity of 8 x 10⁻⁴⁷ cm² at 60 GeV/c²
- Pb/Cu shielding for external radiation
- increased PE shielding (neutrons)
- possible neutron veto

Why SNOLAB? Depth is Important

Only need to worry about radiogenic neutrons!

Low Radioactivity Techniques 2013 - April 10-13, 2013

Jodi Cooley - SMU

Radiogenic Neutrons

- External Radiogenic Neutrons
 - Resulting from fission and alpha-n interactions from U, Th in cavern rock
 - Expected to be negligible with passive shielding
- Internal Radiogenic Neutrons
 - Resulting from fission and alpha-n interactions from U, Th in copper cans, shielding and supports.
 - * Expected to be ~1 event, depending on material cleanliness

For these reasons we are considering a neutron veto in the shield design.

Physics Requirements for a Neutron Veto

- Total unvetoed background in iZIP detectors: < 1 event in the 200 kg phase.
- Total background rate (gamma + neutrons) must not generate excessive background rates in the iZIP detectors
 - Implies radio-clean construction
- Negligible contribution to dead-time
 - Implies low (<kHz) non-coincident trigger rate
- High efficiency to detect neutron capture
 - Aim for 90% or better

Design Details

- Surround the cryostat with a high efficiency neutron detector to tag neutrons.
- Modular tanks of liquid scintillator, with radial thickness 0.4 m, viewed by phototubes.
 - Details of scintillator to use (Gd or B loaded) under consideration.

Alternate Design

- Alternating layers of Gd-loaded poly/scintillator and lead.
- Preliminary studies underway.

Low Radioactivity Techniques 2013 - April 10-13, 2013

Copper

Summary

- SuperCDMS at Soudan (~9 kg) is taking data with iZIP detectors and expects to reach a WIMP-nucleon sensitivity of 2 x 10⁻⁴⁵ cm² for spinindependent interactions.
- * We have demonstrated surface event rejection with the new iZIP detector design using ²¹⁰Pb sources which paves the way for better than 10⁻⁴⁶ cm² sensitivity at SNOLAB.
- Ongoing studies are assessing the necessity and feasibility of including a neutron veto in the SuperCDMS at SNOLAB design.