Low Radioactivity Techniques 2013

Modeling Surface Backgrounds from Radon Progeny Plate-Out

UNIVERSITY OF SOUTH DAKOTA

V.E. Guiseppe, G. Perumpilly, N. Snyder

Motivation:

- →Ultra-low background underground experiments are susceptible to surface backgrounds from radon exposure.
- →The energetic alpha particles could mask the signal of neutrinoless double-beta decay.
- →The nuclear recoil from the decay of ²¹⁰Po could mimic the expected signal of a WIMP.
- ⇒ Exposure to radon leaves behind a depth distribution of progeny primarily through adsorption, nuclear recoil implantation, and diffusion.
- → The surface roughness (texture) changes the effective depth through which a ²¹⁰Po decay product travels

→We examine radon-exposed samples with a variety of surface roughnesses

Simulated ²¹⁰Po decay from a smooth surface no implantation - external alpha detection

Experiment:

- ⇒ Expose samples to radon (~ 5x10⁶ Bq m⁻³ day ⁻¹)
- → Measure roughness (R) with Atomic Force Microscope
- → Count ²¹⁰Po on an Ortec ULTRA-AS alpha detector

Model: Geant4 simulation

- ²¹⁸Po on surface; decay to ²¹⁰Pb for implantation depth (down to 0.1μm)
- Using validated nuclear recoil range (SRIM)
- Extend depth to effectively model extra material from roughness (exponential down to R)
- -simpler than including roughness in geometry
 -Further extend depth for diffusion and
 bulk backgrounds

We gratefully acknowledge the support of the U.S. Department of Energy through Award Number DE-SCO005054.

Summary:

- A realistic radon progeny implantation depth and effective roughness correction is necessary to model the low energy tail from surface α decays
- Surface α decays from rough surfaces (even mill finish) can degrade to energies near a double-beta region of interest and low energy WIMP interactions