

Low Radioactivity Techniques 2013

Low-Background Gamma-Ray Spectrometry in the **Garching Underground Laboratory**

M. HOFMANN, T. MANNEL, AND M. V. SIVERS

The Garching Underground Laboratory and its Shielding Profile

Underground Lab

- Shallow depth: \sim 10 m.w.e.
- •2 screening stations (GEM [1,2] and **LoAx** [6]) mainly used for material preselection
- Measured Radon content in lab air: $\sim 10 \text{ Bq/m}^3$
- •Located close to the Research Reactor FRM II
- \Rightarrow Possibility to carry out Neu-

Muon Flux Measurement

- Measurement Coincidence with two plastic scintillator panels
- Comparison of the total muon rate above ground and underground
- \Rightarrow Integral muon flux reduced by factor of 2.6 [3,4]
- Investigation of the 4 cardinal directions
- Measurements under an incli-

tron Activation Analyses with very short time delay [1]

nation of 0° , 30° , 45° , 60°

 \Rightarrow Investigation of the shielding profile of the underground lab

GEM Detector Setup

LoAx Detector Setup

Germanium Detector

 HPGe detector with 150.5% relative counting efficiency • Entrance window: 1.5 mm Mg • Measured resolution: 955 eV at 122 keV (⁵⁷Co), 1.764 keV at 1.33 MeV (⁶⁰Co) [2]

Anti-Compton Veto

- TI-doped sodium iodide scintillation crystals; Copper housed
- Read-out by six 2" and one 3" PMTs
- Entrance window: 0.8 mm ultrapure aluminium

Germanium Detectors

- Two HPGe detectors in faceto-face geometry
- Active mass / volume:
- $-620 \text{ g} / 118 \text{ cm}^3 \text{ (LoAx1)}$
- $-594 \text{ g} / 113 \text{ cm}^3$ (LoAx2)
- Entrance window of both detectors: \sim 1 mm carbon fiber
- Measured resolution [6]:
- -LoAx1: 1.05 keV at 122 keV (⁵⁷Co), 1.82 keV at 1.33 MeV (⁶⁰Co)
- –LoAx2: 0.89 keV at 122 keV (⁵⁷Co), 2.12 keV at 1.33 MeV (⁶⁰Co)

Passive and Active Shielding

- 5 mm of copper

Passive and Active Shielding • 5 cm of low-activity lead (\lesssim 5 Bq/kg 210 Pb) • 10 cm normal lead • Nitrogen-flushed air-tight PVC box • Six plastic scintillator panels as active

muon veto on top and all sides

• 5 cm of low-activity lead (\lesssim 5 Bq/kg 210 Pb)

- 10 cm normal lead
- Nitrogen-flushed air-tight PVC box
- Seven plastic scintillator panels as active muon veto on top and all sides

Background Spectra, Integral Count Rates and Gamma Lines

Integral Count Rates

• Measured with full active and passive shieldings:

- **–GEM:** 10250±26 cts/day (40-2700 keV)
- **-LoAx1:** 5258±27 cts/day (20-1500 keV)
- **-LoAx2:** 6876±31 cts/day (20-1500 keV)

Gamma Lines in the Background

- GEM: many lines from U/Th-chain and ⁴⁰K that originate from materials in anti-Compton veto
- LoAx1/2: only few lines from ²¹⁰Pb, ²¹²Pb, ⁴⁰K from surrounding shielding

Detector		GEM	LoAx1	LoAx2	Heisel et al. [5]
Isotope	Energy (keV)		Activity (cts/day)		
²³⁸ U chain:					
234 Th	63.3	< 67.3	< 45.5	< 36.7	-
234m Pa	1001.0	< 22.0	< 7.0	< 9.5	-
214 B i	609.3	97.1 ± 3.8	< 11.6	< 13.8	< 1.9
210 Pb	46.5	20.1 ± 3.3	35.6 ± 4.8	10.9 ± 4.9	-
²³² Th chain:					
208 TI	583.1	35.7 ± 3.0	< 15.9	< 13.0	-
	2614.5	63.7 ± 2.1	-	-	< 1.3
other:					
137 Cs	661.7	< 25.0	< 9.6	< 8.6	-
60 Co	1332.5	< 9.9	< 4.0	< 7.6	< 2.1
40 K	1460.8	300.5 ± 4.7	10.5 ± 1.8	10.5 ± 1.9	1.45 ± 0.80
eta^+	511	51.2 ± 3.7	11.0 ± 2.5	14.5 ± 3.6	-

Detector Efficiency Monte-Carlo Simulation and its Calibration

References

Figure 1: Efficiency ratio $\epsilon_{meas}/\epsilon_{sim}$ for the two LoAx germanium detectors including the empirical fit function for the LoAx2 data. For screening measurements only gamma lines above 45 keV are used.

Monte-Carlo Simulation

• Geant4 simulation of full detector setup

• Physics List: standard EM physics • Decay cascades simulated with Radioac-

tive Decay Module

Efficiency Calibration

- Detector efficiency determined with radioactive sources of well known and low activities: ${}^{241}Am$, ${}^{133}Ba$, ${}^{57}Co$, ${}^{60}Co$, ${}^{137}Cs$, 22 Na, and 88 Y
- Different source positions within the setup
- Ratio $\epsilon_{\text{meas}}/\epsilon_{\text{sim}} < 1$ and constant for large energies, decrease for small energies
- \Rightarrow Additional dead layer that is not implemented in simulation
- \Rightarrow Efficiency ratio fitted with $\frac{\varepsilon_{meas}}{\varepsilon_{min}} = a_0 e^{a_1 \cdot E + a_2}$

Figure 2: Efficiency ratio $\epsilon_{meas}/\epsilon_{sim}$ for the GEM detector including the empirical fit function [1]. For screening measurements only gamma lines above 230 keV are used.

] M. Hofmann, Ph.D. thesis, TU München (2012) [2] M. Hofmann, Diploma thesis, TU München (2007) [3] B. Heiss, Bachelor thesis, TU München (2012) [4] R. Burkhardt, Bachelor thesis, TU München (2012) M. Heisel, et al., arXiv: [5] 0812.0768v1 [physics.ins-det] (2008)[6] C. Wiesinger, Bachelor thesis, TU München (2012)