Construction and measurements of a vacuum-swing-adsorption radon mitigation system

Richard Schnee Syracuse University

Low Radioactivity
Techniques Workshop
April 11, 2013

Motivation for Radon-Mitigated Cleanroom

 Radon daughters are a potentially dominant background for many low-background experiments

214Pb β SuperNEMO

210Pb β EDELWEISS, SuperCDMS

210Po α CUORE

206Pb recoil nucleus from 210Po α

CRESST, DEAP/CLEAN, SuperCDMS

Neutrons from (α,n) on teflon

LUX, XENON1ton, DArKSIDE

210Pb on wires of BetaCage [see R.H. Nelson talk, R. Bunker poster]

- For some types of assembly, other methods not practical
 - Vacuum glovebox impractical for large objects or delicate assembly
 - Cleaning after assembly difficult & risky for complicated structures
 - But see e.g. DRIFT nitric etching or wires after assembly: http://www.youtube.com/watch?v=G4270rjtDnY

Failing Charge Symmetry Selection

Radon Mitigation Systems

Continuous

- $C_{final} = C_{initial} \exp(-t/t_{Rn})$
 - [for ideal column] lifetime
- Relatively simple & robust
- Need to cool carbon to be effective [A. Nachab, LRT2006]

Swing

- Stop gas flow well before t
 - Regenerate column #1
 - Flow through column #2
- $C_{final} = 0$
 - [for ideal column]
- More complicated
- Vacuum-swing
 - Potentially better performance than continuous system at lower cost [A. Pocar, LRT2004]
- Temperature-swing
 - Expect best performance,
 highest cost [A. Hallin, LRT2010]

Vacuum-Swing Adsorption

- Takes advantage of greater adsorption capacity at high pressures
 - Regenerate carbon by flowing small fraction f of gas mass flow F back through tank at low purge pressure
 - Volume purge flow φ_{purge}

$$\phi_{purge} = \frac{P_{atm}}{P_{purge}} fF = \frac{fP_{atm}}{P_{purge}} \phi_{feed}$$

 Push back radon front (ignoring tails) if

$$G \equiv \frac{\phi_{purge}}{\phi_{feed}} = \frac{fP_{atm}}{P_{purge}} > 1$$

The Syracuse Radon Mitigation System

- Based closely on Princeton design (described well in Pocar thesis, and thanks to T. Shutt, A. Hallin, A. Pocar for discussions)
 - Tried to make some improvements, cut several corners

item Pr	rinceton cost (US\$)	Syracuse cost (10 years later)
tanks	8k	- 9k
charcoal (0.5 t)	6k	1.5k (140 kg / tank, different carbon)
vacuum pumps	22k	10k (roughing pump has lower capacity
valves	4k	7k at high pressures)
dryer	3.5k	7.5k
blower	1.5k	(none)
HEPA filter $+$ housing	1.5k	1k
computer and valve control	boards 1.5k	6k including gauges
other (fittings, tubing,)	5k	5k + 8k chiller
total	53k	No prototype,
		no radon source

- Commissioning in progress
 - Long-term results may be better (or worse) than what I show here
 - Hope to learn more about practical potential of this method

Syracuse Cleanroom Design

- 8 feet x 12 feet x 8 feet high
 - With 4' x 8' anteroom
 - As small as would be practical
- All aluminum panels/extrusions
 - Thick acrylic windows
 - Minimize emanation/permeation
 - Very leaktight
- HVAC outside
 - Efforts to make leaktight
- Aged water for humidification
- Designed for 30 cfm low-radon makeup air
- Fast HEPA filtration: 1 air exchange per 43 seconds

Syracuse Cleanroom

Air Sampling of Cleanroom

- Use high-volume air sampling system with Whatman GF/F glass-fiber filters, transfer to Ortec AlphaDuo to count ²¹⁸Po, ²¹⁴Po decays and infer airborn concentrations of ²¹⁸Po, ²¹⁴Bi, ²¹⁴Pb
 - Preliminary results indicate cleanroom ~10x lower radon daughter concentrations than outside lab, prior to radon mitigation

HI-Q Environmental Products CF-901 (\$1200) 0-70 lpm

Activated Carbon

Calgon Coconut Activated Carbon Product OVC Plus 4x8 (mesh) Multiply rinsed, then dried under high-flow fume hoods

Two Identical
Stainless-steel
Vacuum Vessels
Loaded with
~150 kg each &
Spring Loaded

Opened up tank after first month commissioning, found carbon still in good shape & well packed.

The Radon Filter

The Radon Filter - Close Up

Comparisons to Princeton System

Takes 5 minutes to pump down to ~10 torr (vs. Princeton ~1 minute), so part of cycle is inefficient

Expected Volume Flow Gains

- Want big G, big output flow, and short cycle times
 - Must have G>1 for system to mitigate at all
 - Note this is not a comparison (same G in different systems can be different performance)

Radon Reduction at Filter Output

Radon Mitigation Results

Conclusions

- Syracuse VSA radon-mitigation system working
 - >10x reduction, to 0.6 Bq/m³, at filter output
 - >5x reduction, to 1.1 Bq/m³, inside cleanroom
 - About same level as old Princeton Borexino system
 - Not (yet) at expected performance
 - Many knobs yet to turn, possible fixes to make

Grad Joseph Kiveni (now at FNAL)

Phil Arnold and Lou Buda

Radon

Mitigation Team

Post-doc Ray Bunker

Mark Kos

(now PNN

ug Andrew Tenney

h.s. student John Roberts (now at U.Chicago)

Post-bac