LOW BACKGROUND HPGE SPECTROMETER IN INVESTIGATIONS OF 2B DECAY

E.Rukhadze¹, on behalf of OBELIX^{1,2,3} collaboration Ekaterina.Rukhadze@utef.cvut.cz

¹IEAP CTU in Prague, Czech Republic, ²JINR, Dubna, Russia, ³LSM, France

Abstract:

A low background HPGe spectrometer Obelix with sensitive volume of 600 cm³ was installed at the Modane Underground Laboratory (LSM, France, 4800 m w.e.), as a common activity of JINR Dubna, IEAP CTU in Prague and LSM. The detector was built as a multipurpose device, to search for double beta decay processes (0vEC/EC decay of ¹⁰⁶Cd in the frame of TGV experiment and 2v2β- decay of ¹⁰⁰Mo to the exited states of ¹⁰⁰Ru for NEMO-3 experiment), to measure contamination of enriched isotopes studied by the NEMO-3 experiment and radio-impurities in construction materials. Results of background measurement, efficiency of detector and contaminations in ¹⁰⁰Mo and ¹⁵⁰Nd samples are given. The preliminary results of $2v2\beta^{-}$ decay of 100 Mo to the 0⁺ (1130 keV) and 2⁺ (540 keV) states are presented.

Experimental setup and background measurement

Sensitive volume: Efficiency: Peak / Compton:

 600 cm^3 **160**%

Energy resolution: ~1.2 keV at 122 keV (⁵⁷Co), ~2.0 keV at 1332 keV (60Co) ~12 cm arch. Pb ~20 cm low active Pb

E (keV)

(Counts/h)

0.007±0.012

0.119±0.023

0.017±0.011

0.038±0.012

0.050±0.011

 0.039 ± 0.012

0.055±0.010

0.060±0.012

0.018±0.009

0.157±0.018

0.034±0.010

0.050±0.012

0.022±0.007

0.018±0.007

Distance from HPGe

crystal to the end cap: 4mm Entrance window: Al, 1.6 mm Radon free air

	186
General view of HPGe detector in lead shielding	238
64	295
KXGe	352
	583
48—	609
57Co	840
32————————————————————————————————————	911
511	969
214Pb 208Tl 40K	1124
16 1 228Ac 65Zn	1274
54Mn 22Na 214Bi 208Tl	1460
O	1764
1000 2000 3000 4000 5000 6000	1809
keV	2614
Pasteground anostrum for 10 days	

2614 0.028 ± 0.006 γ-lines identified in background Background spectrum for 40 days

ultra low background cryostat located at LSM, France (4800 m w.e.). The background spectrum was measured for 40 days and important y-lines are

summarized in the table.

II. Efficiency of the detector

Efficiency curve for Obelix detector

Measurement of La source in Marinelli beakers

La₂0₃(238g)+flour(954g),T=1800s

S (788keV) = 3488±60 $\varepsilon = 3.4\%$ S (1435keV) = 4821±70 256-3000

for 2v2β- processes ¹⁰⁰Mo to the 0+ and 2+ excited states of ¹⁰⁰Ru.

Energy spectrum measured with of La₂O₃ source (top arrangement) source (side arrangement) To obtain the detector efficiency an original method using special low-active samples with known mass and activity was developed. The samples were produced

from La₂O₃ mixed with different additives (e.g. flour, lead shot). The natural La contains ~0.09% of 138 La ($T_{1/2}$ =1.02×10 11 years), which is characterized by emission of γ rays with energies of 788.7 keV and 1435.8 keV. The samples in different geometries (mainly top and side arrangements) were investigated. Based on the results of measurements with La₂O₃ and standard sources of ¹⁵²Eu and ¹³³Ba, the total efficiency curve was obtained.

III. Radio-impurities in **NEMO-3 samples**

Detector Obelix is P-type coaxial HPGe detector produced by Canberra in U-type

		¹⁰⁰ Mo		¹⁵⁰ Nd		
Isotope	Energy (keV)	Counts/h	Activity (mBq/kg)	Counts	Activity (mBq/kg)	
²¹⁴ Pb	295	0.11 ± 0.03	4.15 ± 1.43			
²¹⁴ Pb	352	0.25 ± 0.0	3.2 ± 0.5	190 ± 36	71.8 ± 5.1	
²⁰⁷ Bi	570			395 ± 25	136 ± 9	
²¹⁴ Bi	609	0.235 ± 0.022	1.43 ± 0.15	112 ± 15	81 ± 18	
²¹⁴ Bi	1765	0.065 ± 0.02	1.1 ± 0.3			
¹³⁷ Cs	662	0.048 ± 0.015	0.16 ± 0.05	62 ± 12	18.8 ± 3.0	
²²⁸ Ac	911			48 ± 16	55.8 ± 17.2	
²³⁴ Pa	1001	0.041 ± 0.016	14.6 ± 4.7			
²⁰⁷ Bi	1064			207 ± 11	132 ± 14	
¹⁵⁴ Eu	1274			22 ± 5	21 ± 8	
¹⁵² Eu	1408			28 ± 7	54.4 ± 14.3	
$^{40}{ m K}$	1461	0.6 ± 0.04	19.1 ± 1.3	123 ± 8	347 ± 62	
²⁰⁸ Tl	2615	0.05 ± 0.01	0.132 ± 0.041	20 ± 6	71.8 ± 9.7	

Contaminations in NEMO-3 samples (100 Mo and 150 Nd)

Experiment NEMO-3 was already stopped and all measured data are under final processing. The collaboration measured all the 2β decay isotopes before the beginning of experiment and during period of 2011-2012 (after the experiment was finished), Obelix detector was used to remeasure them. The results for foils made of ¹⁰⁰Mo and ¹⁵⁰Nd are presented. Total masses of ¹⁰⁰Mo and ¹⁵⁰Nd samples were 2517 g and 57.17 g, respectively.

IV. Measurement of 2v2β decay of 100 Mo (in collaboration with ITEP)

Metallic foil of enriched ¹⁰⁰Mo with a mass of 2517 g was measured with the Obelix spectrometer for 2288 hours. From this measurement and using callibration curve presented above the half-lives of 2ν2β- decay of ¹⁰⁰Mo to the 0+ and 2+ excited states of ¹⁰⁰Ru were obtained. The preliminary results are presented in the table.

Conclusion and future plans:

Obelix detector is very sensitive setup suitable for low background measurement. Using different calibration tests the efficiency curve for Obelix spectrometer was determined. The measurements with enriched samples of ¹⁰⁰Mo and ¹⁵⁰Nd were performed to define the internal radio impurities of the foils. Preliminary results for half-lives of $2v2\beta$ decay of 100 Mo to the 0+(1130 keV) and 2+ (540 keV) excited states of 100 Ru were obtained as $T_{1/2}$ = 7,5 \times 10²⁰ years and $T_{1/2}$ > 3× 10²¹ years, respectively. The investigation of $\beta\beta$ decay using Obelix detector will continue with 106 Cd (0vEC/EC decay) and 150 Nd (longer time of measurement).