LOW BACKGROUND HPGE SPECTROMETER IN INVESTIGATIONS OF 2B DECAY # E.Rukhadze¹, on behalf of OBELIX^{1,2,3} collaboration Ekaterina.Rukhadze@utef.cvut.cz ¹IEAP CTU in Prague, Czech Republic, ²JINR, Dubna, Russia, ³LSM, France #### **Abstract:** A low background HPGe spectrometer Obelix with sensitive volume of 600 cm³ was installed at the Modane Underground Laboratory (LSM, France, 4800 m w.e.), as a common activity of JINR Dubna, IEAP CTU in Prague and LSM. The detector was built as a multipurpose device, to search for double beta decay processes (0vEC/EC decay of ¹⁰⁶Cd in the frame of TGV experiment and 2v2β- decay of ¹⁰⁰Mo to the exited states of ¹⁰⁰Ru for NEMO-3 experiment), to measure contamination of enriched isotopes studied by the NEMO-3 experiment and radio-impurities in construction materials. Results of background measurement, efficiency of detector and contaminations in ¹⁰⁰Mo and ¹⁵⁰Nd samples are given. The preliminary results of $2v2\beta^{-}$ decay of 100 Mo to the 0⁺ (1130 keV) and 2⁺ (540 keV) states are presented. #### **Experimental setup and** background measurement Sensitive volume: Efficiency: Peak / Compton: 600 cm^3 **160**% Energy resolution: ~1.2 keV at 122 keV (⁵⁷Co), ~2.0 keV at 1332 keV (60Co) ~12 cm arch. Pb ~20 cm low active Pb E (keV) (Counts/h) 0.007±0.012 0.119±0.023 0.017±0.011 0.038±0.012 0.050±0.011 0.039 ± 0.012 0.055±0.010 0.060±0.012 0.018±0.009 0.157±0.018 0.034±0.010 0.050±0.012 0.022±0.007 0.018±0.007 Distance from HPGe crystal to the end cap: 4mm Entrance window: Al, 1.6 mm Radon free air | | 186 | |---|------| | General view of HPGe detector in lead shielding | 238 | | 64 | 295 | | KXGe | 352 | | | 583 | | 48— | 609 | | 57Co | 840 | | 32———————————————————————————————————— | 911 | | 511 | 969 | | 214Pb 208Tl 40K | 1124 | | 16 1 228Ac 65Zn | 1274 | | 54Mn 22Na 214Bi 208Tl | 1460 | | O | 1764 | | 1000 2000 3000 4000 5000 6000 | 1809 | | keV | 2614 | | Pasteground anostrum for 10 days | | 2614 0.028 ± 0.006 γ-lines identified in background Background spectrum for 40 days ultra low background cryostat located at LSM, France (4800 m w.e.). The background spectrum was measured for 40 days and important y-lines are summarized in the table. #### II. Efficiency of the detector **Efficiency curve for Obelix detector** Measurement of La source in Marinelli beakers La₂0₃(238g)+flour(954g),T=1800s S (788keV) = 3488±60 $\varepsilon = 3.4\%$ S (1435keV) = 4821±70 256-3000 for 2v2β- processes ¹⁰⁰Mo to the 0+ and 2+ excited states of ¹⁰⁰Ru. Energy spectrum measured with of La₂O₃ source (top arrangement) source (side arrangement) To obtain the detector efficiency an original method using special low-active samples with known mass and activity was developed. The samples were produced from La₂O₃ mixed with different additives (e.g. flour, lead shot). The natural La contains ~0.09% of 138 La ($T_{1/2}$ =1.02×10 11 years), which is characterized by emission of γ rays with energies of 788.7 keV and 1435.8 keV. The samples in different geometries (mainly top and side arrangements) were investigated. Based on the results of measurements with La₂O₃ and standard sources of ¹⁵²Eu and ¹³³Ba, the total efficiency curve was obtained. #### III. Radio-impurities in **NEMO-3 samples** Detector Obelix is P-type coaxial HPGe detector produced by Canberra in U-type | | | ¹⁰⁰ Mo | | ¹⁵⁰ Nd | | | |-------------------|-----------------|--------------------------|-------------------|-------------------|-------------------|--| | Isotope | Energy
(keV) | Counts/h | Activity (mBq/kg) | Counts | Activity (mBq/kg) | | | ²¹⁴ Pb | 295 | 0.11 ± 0.03 | 4.15 ± 1.43 | | | | | ²¹⁴ Pb | 352 | 0.25 ± 0.0 | 3.2 ± 0.5 | 190 ± 36 | 71.8 ± 5.1 | | | ²⁰⁷ Bi | 570 | | | 395 ± 25 | 136 ± 9 | | | ²¹⁴ Bi | 609 | 0.235 ± 0.022 | 1.43 ± 0.15 | 112 ± 15 | 81 ± 18 | | | ²¹⁴ Bi | 1765 | 0.065 ± 0.02 | 1.1 ± 0.3 | | | | | ¹³⁷ Cs | 662 | 0.048 ± 0.015 | 0.16 ± 0.05 | 62 ± 12 | 18.8 ± 3.0 | | | ²²⁸ Ac | 911 | | | 48 ± 16 | 55.8 ± 17.2 | | | ²³⁴ Pa | 1001 | 0.041 ± 0.016 | 14.6 ± 4.7 | | | | | ²⁰⁷ Bi | 1064 | | | 207 ± 11 | 132 ± 14 | | | ¹⁵⁴ Eu | 1274 | | | 22 ± 5 | 21 ± 8 | | | ¹⁵² Eu | 1408 | | | 28 ± 7 | 54.4 ± 14.3 | | | $^{40}{ m K}$ | 1461 | 0.6 ± 0.04 | 19.1 ± 1.3 | 123 ± 8 | 347 ± 62 | | | ²⁰⁸ Tl | 2615 | 0.05 ± 0.01 | 0.132 ± 0.041 | 20 ± 6 | 71.8 ± 9.7 | | Contaminations in NEMO-3 samples (100 Mo and 150 Nd) Experiment NEMO-3 was already stopped and all measured data are under final processing. The collaboration measured all the 2β decay isotopes before the beginning of experiment and during period of 2011-2012 (after the experiment was finished), Obelix detector was used to remeasure them. The results for foils made of ¹⁰⁰Mo and ¹⁵⁰Nd are presented. Total masses of ¹⁰⁰Mo and ¹⁵⁰Nd samples were 2517 g and 57.17 g, respectively. ### IV. Measurement of 2v2β decay of 100 Mo (in collaboration with ITEP) Metallic foil of enriched ¹⁰⁰Mo with a mass of 2517 g was measured with the Obelix spectrometer for 2288 hours. From this measurement and using callibration curve presented above the half-lives of 2ν2β- decay of ¹⁰⁰Mo to the 0+ and 2+ excited states of ¹⁰⁰Ru were obtained. The preliminary results are presented in the table. #### **Conclusion and future plans:** Obelix detector is very sensitive setup suitable for low background measurement. Using different calibration tests the efficiency curve for Obelix spectrometer was determined. The measurements with enriched samples of ¹⁰⁰Mo and ¹⁵⁰Nd were performed to define the internal radio impurities of the foils. Preliminary results for half-lives of $2v2\beta$ decay of 100 Mo to the 0+(1130 keV) and 2+ (540 keV) excited states of 100 Ru were obtained as $T_{1/2}$ = 7,5 \times 10²⁰ years and $T_{1/2}$ > 3× 10²¹ years, respectively. The investigation of $\beta\beta$ decay using Obelix detector will continue with 106 Cd (0vEC/EC decay) and 150 Nd (longer time of measurement).