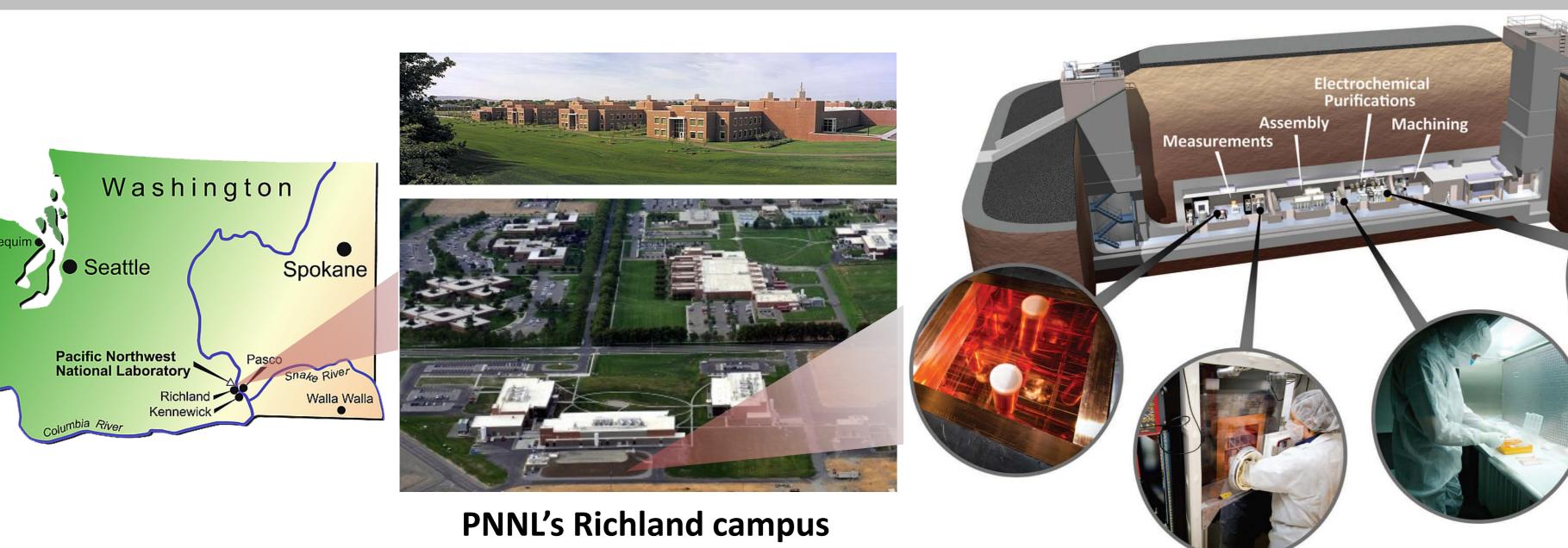
Calibration of an Ultra-Low-Background **Proportional Counter for Measuring ³⁷Ar**

A Seifert, CE Aalseth, RM Bonicalzi, TW Bowyer, AR Day, ES Fuller, DA Haas, JC Hayes, EW Hoppe, PH Humble, ME Keillor, BD LaFerriere, EK Mace, JI McIntyre, JH Merriman, HS Miley, AW Myers, JL Orrell, CT Overman, ME Panisko, RM Williams


Pacific Northwest NATIONAL LABORATORY

Proudly Operated by **Battelle** Since 1965

Abstract

An ultra-low-background proportional counter (ULBPC) design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electrochemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) constructed at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with ¹⁴C/³H, age-dating of groundwater with ³⁹Ar, and soil-gas assay for ³⁷Ar to support On-Site Inspection (OSI). On-Site Inspection is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of ³⁷Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of ³⁷Ar samples over a broad range of pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for ³⁷Ar soil gas background studies.

PNNL's New Shallow Underground Laboratory

- Approx. 2200 sq. ft cleanroom lab space
- Capabilities at ~30 mwe
- Clean fabrication and machining
- Electroformed copper production and cleaning
- Clean detector assembly
- Measurements hall
- Underground materials storage
- Approximately 100x fewer fast neutrons and 6x fewer muons
- Provides capability for low-level measurements "on campus"
- Enables development of detector technology for deep laboratories

Ultra-Low-Background Counting System

Calibration for ³⁷Ar

Energy Calibration Non-linearities

Motivation for Measuring ³⁷Ar

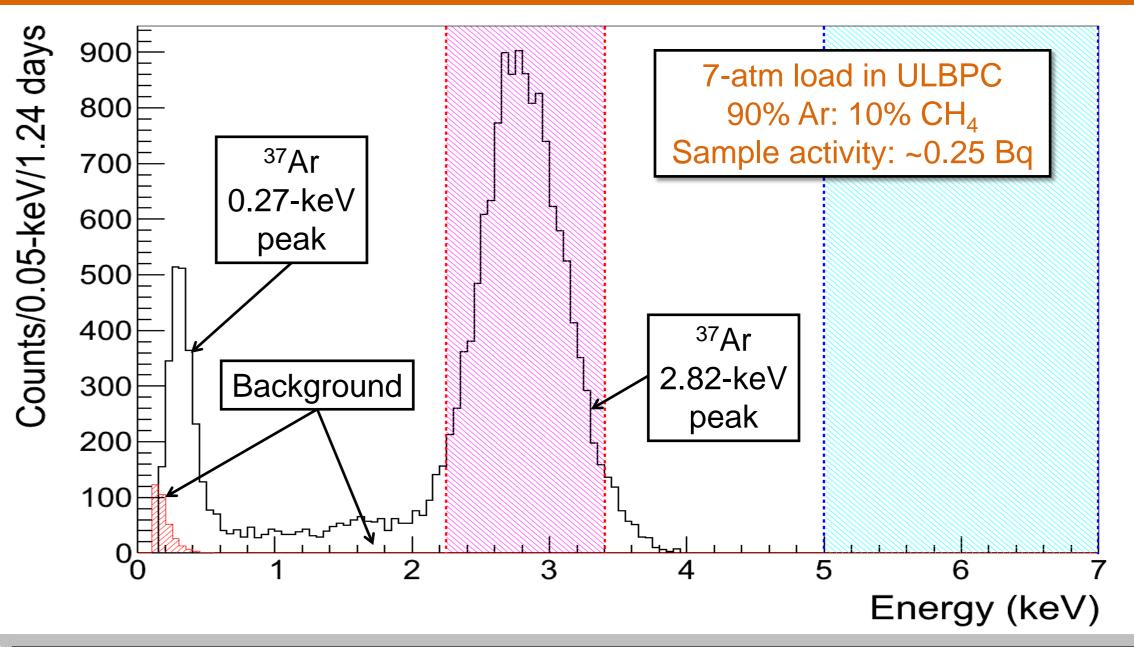
- ▶ ³⁷Ar can be produced via the reaction 40 Ca(n, α) 37 Ar
 - Occurs during underground nuclear detonation via neutrons on soil calcium
 - Significant increase in ³⁷Ar activity is unambiguous evidence of neutrons
- ³⁷Ar is identified as isotopic signature of nuclear testing under the Comprehensive Nuclear Test-Ban Treaty (CTBT)
 - Specifically for collection and measurement during On-Site Inspection (OSI)
- ▶ ³⁷Ar has near-optimal 35-day half-life
 - Long enough to collect and measure, short enough to identify "recent" activity

An ~811-keV neutrino is emitted. ³⁷₁₇Cl EC leaves inner-shell vacancy in ³⁷Cl. Auger electrons and x-rays sum to binding energy of vacancy. Detection is via Auger electrons, X-rays PRINCIPAL RADIATIONS PRODUCED IN THE DECAY OF ³⁷Ar

Decay is via electron capture

Decay Mode	Percent of All Decays	Energy of Auger Electrons (keV)	X-ray (keV)
К	81.5	2.823	0.0
L	8.9	0.270	0.0
Κ	2.7	0.202	2.621
Κ	5.5	0.201	2.622
M	0.9	0.018	0.0
К	0.5	0.007	2.816

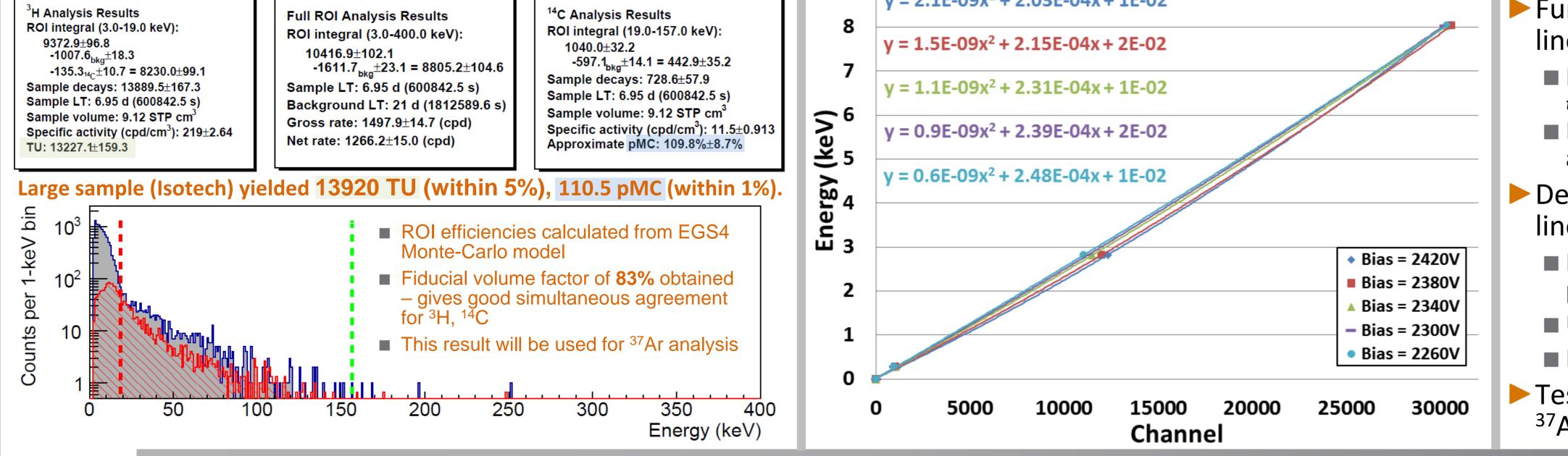
www.pnnl.gov


Table from B.T. Cleavland, et al., THE ASTROPHYSICAL JOURNAL, 496:505-526, Diagram from R. B. Firestone, Table of Isotopes, 8th Ed., John Wiley and Sons, New York (1996

³⁷Ar Decay Signature

3/2+ 35.04 d

Q_{EC}813.5


EC 18

Next Steps

Fiducial Volume Calibration

 $y = 2.1E-09x^2 + 2.03E-04x + 1E-02$

Further studies to understand energy calibration nonlinearities

Prior analyses included looking at k-absorption edge effects {*Monteiro, et al., NIM-A, 505 (2003) 233–237*}

Review recent findings in Dark Matter liquid Ar work and apply (if appropriate) to our work {Sangiorgio, et al. arXiv:1301.4290 [astro-ph.IM]}

Develop analytical model for energy calibration nonlinearities

Must be applicable against samples (and, thus, detector fill pressures) of arbitrary size

Utilizes per-sample 8-keV calibration peak and prior ³⁷Ar spectrum Incorporate into automated analysis routines

Test methods for quantitative measurement against known ³⁷Ar calibration standard

For more information on the science you see here, please contact:

Allen Seifert, Ph.D.

Pacific Northwest National Laboratory P.O. Box 999, MS-IN: J4-65 Richland, WA 99352

Ph: 1 (509) 375-1969 e-mail: allen.seifert@pnnl.gov

