Spatial properties of pairing and quarteting correlations in nuclear systems

Virgil V. Baran

Doru S. Delion

Faculty of Physics, University of Bucharest Department of Theoretical Physics, NIPNE-HH Bucharest-Magurele, Romania

Outline

Pairing Correlations

Pairing Tensor Pairing Coherence Length Results, Conclusions

Quarteting Correlations

Quartet and α tensors Quartet and α Coherence Lengths More Results, More Conclusions

イロン イタン イモン イモン 一臣

2/28

Outline

Pairing Correlations

Pairing Tensor Pairing Coherence Length Results, Conclusions

2 Quarteting Correlations

Quartet and α tensors Quartet and α Coherence Lengths More Results, More Conclusions

イロン イタン イヨン イヨン 三日

2/28

• This presentation is largely based on [Delion & Baran 2015].

Outline

Pairing Correlations

Pairing Tensor Pairing Coherence Length Results, Conclusions

Quarteting Correlations

Quartet and α tensors Quartet and α Coherence Lengths More Results, More Conclusions The hypothesis of correlated pairs and superfluidity in nuclei is supported by a wealth of arguments [Ring & Schuck 1980, Pillet *et. al.* 2010]:

- ∃ energy gap;
- th.-exp. discrepancy in level density and moments of inertia;
- odd-even staggering;
- sudden onset of deformation away from shell closure;
- large cross section of two-particle transfer.

Pairing Tensor

Note:

- pair transfer amplitude \approx pairing tensor [Pillet *et. al.* 2010];
- The pairing tensor κ captures the nontrivial correlations.

Paired systems present two types of densities [Ring & Schuck 1980]:

• normal:
$$\rho_{ab} = \langle c_a^{\dagger} c_b \rangle$$

• abnormal: $\kappa_{ab} = \langle c_a c_b \rangle$

Nonlocal part of κ : The Coherence Length

$$\overline{\lambda}\kappa(r,R)$$

$$\xi(R) = \sqrt{\langle r^2 \rangle_{\kappa(r,R)}}$$

The Coherence Length: $\xi_{HFB} \sim \xi_{BCS}$

Coherence Length Systematics

<ロ> < (日)> < (H)> < (

Coherence Length Scaling

Temperature dependence of ξ

What we expect:

Temperature dependence of ξ

Temperature dependence of ξ

- Almost no variation!
- Mostly affected by the mixing between its parts κ_{odd} and κ_{even} [Pillet *et. al.* 2010].

12/28

The Coherence Length vs λ

Keep N constant!

The Coherence Length vs λ

<ロト <回 > < 注 > < 注 > < 注 > こ の < C 14/28

- $\boldsymbol{\xi}$ has similar properties for all considered interactions.
- $\xi_{HFB} \sim \xi_{BCS}$.
- Nice scaling behavior of $\langle \xi \rangle$, with some shell effects.
- ξ insensitive to variations of the intensity of pairing correlations due to thermal pair breaking.

- $\boldsymbol{\xi}$ has similar properties for all considered interactions.
- $\xi_{HFB} \sim \xi_{BCS}$.
- Nice scaling behavior of $\langle \xi \rangle$, with some shell effects.
- ξ insensitive to variations of the intensity of pairing correlations due to thermal pair breaking.

- ξ has similar properties for all considered interactions.
- $\xi_{HFB} \sim \xi_{BCS}$.
- Nice scaling behavior of $\langle \xi \rangle$, with some shell effects.
- ξ insensitive to variations of the intensity of pairing correlations due to thermal pair breaking.

- ξ has similar properties for all considered interactions.
- $\xi_{HFB} \sim \xi_{BCS}$.
- Nice scaling behavior of $\langle \xi \rangle$, with some shell effects.
- ξ insensitive to variations of the intensity of pairing correlations due to thermal pair breaking.

Outline

1 Pairing Correlations

Pairing Tensor Pairing Coherence Length Results, Conclusions

2 Quarteting Correlations

Quartet and α tensors Quartet and α Coherence Lengths More Results, More Conclusions Simplest way to build a quartet: proton and neutron pairs independent from each other [Mang 1960, Sandulescu 1962].

This allows us to define the quarteting density as:

$$\kappa_q(\mathbf{R}_{\pi},\mathbf{R}_{
u}) = \langle \phi_{00}^{(eta_{lpha}/2)}(r_{\pi}) | \kappa_{\pi}(\mathbf{r_1},\mathbf{r_2})
angle \cdot \langle \phi_{00}^{(eta_{lpha}/2)}(r_{
u}) | \kappa_{
u}(\mathbf{r_3},\mathbf{r_4})
angle$$

α -particle internal wavefunction

$$\psi_{\alpha} = \phi_{00}^{(\beta_{\alpha}/2)}(r_{\pi}) \cdot \phi_{00}^{(\beta_{\alpha}/2)}(r_{\nu}) \cdot \phi_{00}^{(\beta_{\alpha})}(r_{\alpha})$$

<ロ > < 回 > < 目 > < 目 > < 目 > こ ? つへ (~ 17/28

Quartet Coherence Length

$$\xi_q(R_\alpha) = \sqrt{\langle r_\alpha^2 \rangle_{\kappa_q}}$$

Alpha Correlations Density

p-n correlations are described by the term $\phi_{00}^{(\beta_{\alpha})}(r_{\alpha})$ of ψ_{α} .

The α tensor

$$\kappa_{\alpha}(r_{\alpha}, R_{\alpha}) = \kappa_q(r_{\alpha}, R_{\alpha}) \cdot \phi_{00}^{(\beta_{\alpha})}(r_{\alpha})$$

Alpha Correlations Density

p-n correlations are described by the term $\phi_{00}^{(\beta_{\alpha})}(r_{\alpha})$ of ψ_{α} .

The lpha tensor

$$\kappa_{\alpha}(r_{\alpha}, R_{\alpha}) = \kappa_q(r_{\alpha}, R_{\alpha}) \cdot \phi_{00}^{(\beta_{\alpha})}(r_{\alpha})$$

Formation Amplitude

Quartet and α Coherence Lengths

α Coherence Length

$$\xi(R)^2 = \frac{\int r^2 \mathrm{d}r \ r^2 \ \kappa(r,R)^2}{\int r^2 \mathrm{d}r \ \kappa(r,R)^2} = \frac{I^{(2)}}{I^{(1)}}$$

α Coherence Length

For $^{220}\mbox{Ra:}$

- (a) $\kappa_q(r_\alpha, R_\alpha)^2$
- (b) $\kappa_{\alpha}(r_{\alpha},R_{\alpha})^2$
- (c) $w_q(r_\alpha, R_\alpha)$
- (d) $w_{\alpha}(r_{\alpha}, R_{\alpha})$

where
$$\xi(R)^2 = \int \mathrm{d}r \ r^2 \ w(r,R)$$

Conclusions - 2^{nd} part

- Our simple treatment evidences the surface nature of α condensation: the formation amplitude $\mathcal{F}(R_N)$ =max.
- The quartet CL is somewhat similar to the pairing CL, but with larger values on the nuclear surface.
- The p-n correlations play an important role, as the α -CL has a quasiconstant value $\xi_{\alpha} \sim 1.7$ fm $\leq r_{\alpha} = 1.9$ fm.

Conclusions - 2nd part

- Our simple treatment evidences the surface nature of α condensation: the formation amplitude $\mathcal{F}(R_N)$ =max.
- The quartet CL is somewhat similar to the pairing CL, but with larger values on the nuclear surface.
- The p-n correlations play an important role, as the α -CL has a quasiconstant value $\xi_{\alpha} \sim 1.7$ fm $\leq r_{\alpha} = 1.9$ fm.

Conclusions - 2nd part

- Our simple treatment evidences the surface nature of α condensation: the formation amplitude $\mathcal{F}(R_N)$ =max.
- The quartet CL is somewhat similar to the pairing CL, but with larger values on the nuclear surface.
- The p-n correlations play an important role, as the α -CL has a quasiconstant value $\xi_{\alpha} \sim 1.7$ fm $\leq r_{\alpha} = 1.9$ fm.

Thank you!

This work has been supported by the project PN-II-ID-PCE-2011-3-0092 and NuPNET-SARFEN of the Romanian Ministry of Education and Research.

References

Pairing:

- Ring & Schuck 1980: P. Ring, P. Schuck, *The Nuclear Many Body* Problem, Springer-Verlag.
- Pillet *et. al.* 2007: N. Pillet, N. Sandulescu, and P. Schuck, Phys. Rev. C 76, 024310 (2007).
- Pillet *et. al.* 2010: N. Pillet, N. Sandulescu, P. Schuck, and J.-F. Berger, Phys. Rev. C 81, 034307 (2010).

Quartenting and α :

- Mang 1960: H. J. Mang, Phys. Rev. 119, 1069 (1960).
- Sandulescu 1962: A. Sandulescu, Nucl. Phys. 37, 332 (1962).
- Delion 2010: D. S. Delion, *Theory of Particle and Cluster Emission*, (Springer- Verlag, New York, Berlin, 2010).
- D. E. Ward, B. G. Carlsson and S. Aberg, Phys. Scr. 89 (2014) 054027 (6pp) and references therein.
- Delion & Baran 2015: D. S. Delion, V.V. Baran, Phys. Rev. C 91, 024312 (2015)