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e This presentation is largely based on [Delion & Baran 2015].
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Pairing

The hypothesis of correlated pairs and superfluidity in nuclei is
supported by a wealth of arguments [Ring & Schuck 1980, Pillet
et. al. 2010]:

e 1 energy gap;

e th.-exp. discrepancy in level density and moments of inertia;

e odd-even staggering;

sudden onset of deformation away from shell closure;

e Jarge cross section of two-particle transfer.
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Pairing Tensor

Note:

e pair transfer amplitude ~ pairing tensor [Pillet et. al.
2010];

e The pairing tensor x captures the nontrivial correlations.

Paired systems present two types of densities [Ring & Schuck
1980]:

e normal:  pg = (cjlcb>

e abnormal: ku = (cacp)

Pairing tensor [Pillet et. al. 2007, Pillet et. al. 2010]:

K(F1,72) = (BCS| ¥(71) ¥(7%) |BCS)
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Nonlocal part of x: The Coherence Length
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The Coherence Length: égpp ~ Epes

TN - Gauss, ro= 6 fm
10F - Gauss, fo=4.5 fm
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Coherence Length Systematics
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Coherence Length Scaling

0.9 T T T 0.9 T T
(a) protons l‘ (b) neutrons ]
. i
0.85+ <E> ~2.4 A1/5 B 0.85- <£> ~2.0A4 A 1
E osf 1 E osf E
x A
w w
v v
8 2
Sorst 4 8orsp 1
0.7+ ’{. B 0.7+ E
0.65 \ \ \ \ \ 0.65 \ \ \ \ \
1.6 1.8 2 2.2 2.4 1.6 1.8 2 2.2 2.4
log10A log10A

10/28



Temperature dependence of &

What we expect:
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Temperature dependence of &

What we expect:

T increases

pairing correlati

b
& should vary significantly
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Temperature dependence of &

e Almost no variation!

e Mostly affected by the mixing between its parts Kodd and Keven [Pillet et.

al. 2010].
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The Coherence Length vs A
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The Coherence Length vs A
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Conclusions - 1% part

As far as pairing effects are concerned:

e ¢ has similar properties for all considered interactions.
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Conclusions - 1% part

As far as pairing effects are concerned:

& has similar properties for all considered interactions.

EHFB ~ £BCS-

Nice scaling behavior of (£), with some shell effects.

£ insensitive to variations of the intensity of pairing
correlations due to thermal pair breaking.
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Quartet Correlations Density

Simplest way to build a quartet: proton and neutron pairs
independent from each other [Mang 1960, Sandulescu 1962].

This allows us to define the quarteting density as:

kqRa Ro) = (05072 (1) [kn (x1,72)) - (85577 (1) | (3, T4))

a-particle internal wavefunction

o = 8P ) - 47 ) 855
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Quartet Coherence Length
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Alpha Correlations Density

p-n correlations are described by the term qﬁ((JO“)(ra) of 1.

The « tensor
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Alpha Correlations Density

p-n correlations are described by the term qﬁéoa)(ra) of 1.

The o tensor

Formation Amplitude

— Full pairing

The amplitude <¢a|quartet> is [ |— pairing strength at 70%

[Mang 1960]:
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Quartet and o Coherence Lengths
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a Coherence Length

1.9 T T T T T T T T T
1.8 A
T L]
[ ]
£ P M e T
- L & ° L
‘:\7.1 7 . .=o’l= nee” *
v “.:....
L [ ]
1.6 *
1_5V R | S WO SO MO S (S S W S R
100 120 140 160 180 200 220 240 260
A

21/28



22/28



a Coherence Length

For 220Ra:

* (a) kg(Ta; Rqy)?

* (b) “a(ra:Ra)2
o (c) wy(ra, Ra)
¢ (d) wa(ra, Ra)

where

E(R)? = [dr r? w(r, R)




Conclusions - 2" part

e Our simple treatment evidences the surface nature of a
condensation: the formation amplitude F(Ry)=max.
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with larger values on the nuclear surface.
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Conclusions - 2" part

e Our simple treatment evidences the surface nature of a
condensation: the formation amplitude F(Ry)=max.

e The quartet CL is somewhat similar to the pairing CL, but
with larger values on the nuclear surface.

e The p-n correlations play an important role, as the a-CL has a
quasiconstant value &, ~ 1.7fm< r, = 1.9fm.
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