Impact of pairing on thermodynamical properties of stellar matter

Dipartimento di Fisica e Astronomia and INFN - LNS

Catania, 21 - 26 June 2015

Authors: Burrello S.¹, Colonna M.¹, Gulminelli F.², Raduta A.³, Aymard F.² ¹ INFN - LNS, Catania, ² CNRS - ENSICAEN, Caen ³ IFIN - HH, Bucharest

The structure of the inner crust The Nuclear Statistical Equilibrium model

Introduction: main Neutron Stars (NS) properties

Nuclear matter: wide range of ρ, y_ρ, T

- Inner crust structure:
 - lattice of nuclear clusters
 - ultrarelativistic electron gas
 - superfluid **unbound** neutrons
- Superfluidity effects:
 - giant glitches
 - cooling process

イロト イポト イヨト イヨト

The structure of the inner crust The Nuclear Statistical Equilibrium model

Introduction: main Neutron Stars (NS) properties

- Nuclear matter: wide range of ρ, y_ρ, T
- Inner crust structure:
 - lattice of nuclear clusters
 - ultrarelativistic electron gas
 - superfluid unbound neutrons
- Superfluidity effects:
 - giant glitches
 - cooling process

The structure of the inner crust The Nuclear Statistical Equilibrium model

Introduction: main Neutron Stars (NS) properties

Recent observations

 $\label{eq:cassiopeia:strong} \textbf{Cassiopeia: strong evidence for superfluidity}$

[Page, D. et al. Physical Review Letters 106.8 (2011)]

- Nuclear matter: wide range of ρ, y_ρ, T
- Inner crust structure:
 - lattice of nuclear clusters
 - ultrarelativistic electron gas
 - superfluid **unbound** neutrons
- Superfluidity effects:
 - giant glitches
 - cooling process

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Clusters in the inner crust

• NS cooling simulations \Rightarrow description of inhomogeneous crust

- Self-consistent mean-field approaches:
 - Microscopic calculations (sometimes too computationally expensive!)
 - Phenomenological model (ex. Nuclear Statistical Equilibrium)
- Wigner-Seitz (WS) approximation: non-interacting and electrically neutral spherical cell
- T = 0: min[E_{WS}/V_{WS}] \rightarrow one single nucleus (SNA)
- Finite T: beyond SNA \rightarrow statistical distribution of nuclei
- NSE model: nucleons and nuclei in thermal and chemical equilibrium [Ropke G., Bastian N. U., Blaschke D., Klahn T., Typel S., Wolter H.H., 2013, Nucl. Phys. A] [Raduta A.R., Gulminelli F., 2010, Phys. Rev. C 82]

・ 同 ト ・ ヨ ト ・ ヨ ト

Clusters in the inner crust

- NS cooling simulations \Rightarrow description of inhomogeneous crust
- Self-consistent mean-field approaches:
 - Microscopic calculations (sometimes too computationally expensive!)
 - Phenomenological model (ex. Nuclear Statistical Equilibrium)
- Wigner-Seitz (WS) approximation: non-interacting and electrically neutral spherical cells
- T = 0: min[E_{WS}/V_{WS}] \rightarrow one single nucleus (SNA)
- Finite T: beyond SNA \rightarrow statistical distribution of nuclei
- NSE model: nucleons and nuclei in thermal and chemical equilibrium [Ropke G., Bastian N. U., Blaschke D., Klahn T., Typel S., Wolter H.H., 2013, Nucl. Phys. A] [Raduta A.R., Gulminelli F., 2010, Phys. Rev. C 82]

Clusters in the inner crust

- NS cooling simulations \Rightarrow description of inhomogeneous crust
- Self-consistent mean-field approaches:
 - Microscopic calculations (sometimes too computationally expensive!)
 - Phenomenological model (ex. Nuclear Statistical Equilibrium)
- Wigner-Seitz (WS) approximation: non-interacting and electrically neutral spherical cells
- T = 0: min[E_{WS}/V_{WS}] \rightarrow one single nucleus (SNA)
- Finite T: beyond SNA \rightarrow statistical distribution of nuclei
- NSE model: nucleons and nuclei in thermal and chemical equilibrium [Ropke G., Bastian N. U., Blaschke D., Klahn T., Typel S., Wolter H.H., 2013, Nucl. Phys. A] [Raduta A.R., Gulminelli F., 2010, Phys. Rev. C 82]

Clusters in the inner crust

- NS cooling simulations \Rightarrow description of inhomogeneous crust
- Self-consistent mean-field approaches:
 - Microscopic calculations (sometimes too computationally expensive!)
 - Phenomenological model (ex. Nuclear Statistical Equilibrium)
- Wigner-Seitz (WS) approximation:

non-interacting and electrically neutral spherical cells

- T = 0: min[E_{WS}/V_{WS}] \rightarrow one single nucleus (SNA)
- NSE model: nucleons and nuclei in thermal and chemical equilibrium [Ropke G., Bastian N. U., Blaschke D., Klahn T., Typel S., Wolter H.H., 2013, Nucl. Phys. A] [Raduta A.R., Gulminelli F., 2010, Phys. Rev. C 82]

Clusters in the inner crust

- NS cooling simulations \Rightarrow description of inhomogeneous crust
- Self-consistent mean-field approaches:
 - Microscopic calculations (sometimes too computationally expensive!)
 - Phenomenological model (ex. Nuclear Statistical Equilibrium)
- Wigner-Seitz (WS) approximation: non-interacting and electrically neutral spherical cells
- T = 0: min[E_{WS}/V_{WS}] \rightarrow one single nucleus (SNA)
- Finite T: beyond SNA → statistical distribution of nuclei
- NSE model: nucleons and nuclei in thermal and chemical equilibrium [Ropke G., Bastian N. U., Blaschke D., Klahn T., Typel S., Wolter H.H., 2013, Nucl. Phys. A] [Raduta A.R., Gulminelli F., 2010, Phys. Rev. C 82]

Clusters in the inner crust

- $\bullet~$ NS cooling simulations $\Rightarrow~$ description of inhomogeneous crust
- Self-consistent mean-field approaches:
 - Microscopic calculations (sometimes too computationally expensive!)
 - Phenomenological model (ex. Nuclear Statistical Equilibrium)
- Wigner-Seitz (WS) approximation: non-interacting and electrically neutral spherical cells
- T = 0: min[E_{WS}/V_{WS}] \rightarrow one single nucleus (SNA)
- Finite T: beyond SNA → statistical distribution of nuclei
- NSE model: nucleons and nuclei in thermal and chemical equilibrium [Ropke G., Bastian N. U., Blaschke D., Klahn T., Typel S., Wolter H.H., 2013, Nucl. Phys. A] [Raduta A.R., Gulminelli F., 2010, Phys. Rev. C 82]

4 冊 ト 4 三 ト 4 三 ト

• Unbound nucleons (gas): non-relativistic density functional

$$\mathcal{E}_{gas} = 2 \sum_{q=n,p} \int_{0}^{\infty} \frac{d\mathbf{p}}{h^{3}} f_{q} \frac{p^{2}}{2m_{q}^{*}} + \mathscr{E}_{Sky}^{pot} \quad (\mathsf{SLy4 Skyrme effective interaction})$$

• Clusters partition function (Fisher's hypothesis): $Z_{cl} = \sum_{n_A} \prod_{A>1} \frac{\omega_A^A}{n_A!}$

$$\begin{split} &\omega_{A,Z} \propto \exp\left[-\frac{1}{TV_{WS}}((E_{A,Z} - TS_{A,Z})_{WS} - \mu A - \mu_3(N - Z)\right] \\ &E_{A,Z} = E_{A,Z}^{vac} + \langle E_{A,Z}^* \rangle_T + E_{A,Z}^{coul} \end{split}$$

- E^{vac}_{A,Z}: Liquid Drop Model parameters fitted on SLy4 HF calculations [P. Danielewicz and J. Lee, Nucl. Phys. A 818 (2009)]
- Light clusters underbound by formula ⇒ two parameterizations adopted:
 - LDM, using functional for each cluster
 - EXP + LDM, using experimental binding energies whenever available
- No pairing \Rightarrow not adequate to describe heat capacity of the crust

• Unbound nucleons (gas): non-relativistic density functional

$$\mathcal{E}_{gas} = 2 \sum_{q=n,p} \int_{0}^{\infty} \frac{d\mathbf{p}}{h^{3}} f_{q} \frac{p^{2}}{2m_{q}^{*}} + \mathscr{E}_{Sky}^{pot} \quad (\text{SLy4 Skyrme effective interaction})$$

• Clusters partition function (Fisher's hypothesis): $Z_{cl} = \sum_{n_A} \prod_{A>1} \frac{\omega_A^{n_A}}{n_A!}$

$$\begin{split} &\omega_{A,Z} \propto exp\left[-\frac{1}{TV_{WS}}((E_{A,Z}-TS_{A,Z})_{WS}-\mu A-\mu_3(N-Z)\right] \\ &E_{A,Z}=E_{A,Z}^{vac}+\langle E_{A,Z}^*\rangle_T+E_{A,Z}^{coul} \end{split}$$

- E^{vac}_{A,Z}: Liquid Drop Model parameters fitted on SLy4 HF calculations [P. Danielewicz and J. Lee, Nucl. Phys. A 818 (2009)]
- Light clusters underbound by formula ⇒ two parameterizations adopted:
 - EXP + LDM, using experimental binding energies whenever available
- No pairing \Rightarrow not adequate to describe heat capacity of the crust

• Unbound nucleons (gas): non-relativistic density functional

$$\mathcal{E}_{gas} = 2 \sum_{q=n,p} \int_{0}^{\infty} \frac{d\mathbf{p}}{h^{3}} f_{q} \frac{p^{2}}{2m_{q}^{*}} + \mathscr{E}_{Sky}^{pot} \quad (\text{SLy4 Skyrme effective interaction})$$

• Clusters partition function (Fisher's hypothesis): $Z_{cl} = \sum_{n_A} \prod_{A>1} \frac{\omega_A^{n_A}}{n_A!}$

$$\begin{split} &\omega_{A,Z} \propto \exp\left[-\frac{1}{TV_{WS}}((E_{A,Z} - TS_{A,Z})_{WS} - \mu A - \mu_3(N - Z)\right] \\ &E_{A,Z} = E_{A,Z}^{vac} + \langle E_{A,Z}^* \rangle_T + E_{A,Z}^{coul} \end{split}$$

- E^{vac}_{A,Z}: Liquid Drop Model parameters fitted on SLy4 HF calculations
 [P. Danielewicz and J. Lee, Nucl. Phys. A 818 (2009)]
- Light clusters underbound by formula ⇒ two parameterizations adopted:
 - LDM, using functional for each cluster
 - EXP + LDM, using experimental binding energies whenever available
- No pairing \Rightarrow not adequate to describe heat capacity of the crust

э

The NSE model

• Unbound nucleons (gas): non-relativistic density functional

$$\mathcal{E}_{gas} = 2 \sum_{q=n,p} \int_{0}^{\infty} \frac{d\mathbf{p}}{h^{3}} f_{q} \frac{p^{2}}{2m_{q}^{*}} + \mathscr{E}_{Sky}^{pot} \quad (\text{SLy4 Skyrme effective interaction})$$

• Clusters partition function (Fisher's hypothesis): $Z_{cl} = \sum_{n_A} \prod_{A>1} \frac{\omega_A^{n_A}}{n_A!}$

$$\begin{split} &\omega_{A,Z} \propto exp\left[-\frac{1}{TV_{WS}}((E_{A,Z}-TS_{A,Z})_{WS}-\mu A-\mu_3(N-Z)\right] \\ &E_{A,Z}=E_{A,Z}^{vac}+\langle E_{A,Z}^*\rangle_T+E_{A,Z}^{coul} \end{split}$$

- $E_{A,Z}^{vac}$: Liquid Drop Model parameters fitted on SLy4 HF calculations [P. Danielewicz and J. Lee, Nucl. Phys. A 818 (2009)]
- Light clusters underbound by formula ⇒ two parameterizations adopted:
 - LDM, using functional for each cluster
 - EXP + LDM, using experimental binding energies whenever available
- No pairing \Rightarrow not adequate to describe heat capacity of the crust

• Unbound nucleons (gas): non-relativistic density functional

$$\mathcal{E}_{gas} = 2 \sum_{q=n,p} \int_{0}^{\infty} \frac{d\mathbf{p}}{h^{3}} f_{q} \frac{p^{2}}{2m_{q}^{*}} + \mathscr{E}_{Sky}^{pot} \quad (\mathsf{SLy4 Skyrme effective interaction})$$

• Clusters partition function (Fisher's hypothesis): $Z_{cl} = \sum_{n_A} \prod_{A>1} \frac{\omega_A^{n_A}}{n_A!}$

$$\begin{split} &\omega_{A,Z} \propto exp\left[-\frac{1}{TV_{WS}}((E_{A,Z}-TS_{A,Z})_{WS}-\mu A-\mu_3(N-Z)\right] \\ &E_{A,Z}=E_{A,Z}^{vac}+\langle E_{A,Z}^*\rangle_T+E_{A,Z}^{coul} \end{split}$$

- E^{vac}_{A,Z}: Liquid Drop Model parameters fitted on SLy4 HF calculations
 [P. Danielewicz and J. Lee, Nucl. Phys. A 818 (2009)]
- Light clusters underbound by formula ⇒ two parameterizations adopted:
 - LDM, using functional for each cluster
 - EXP + LDM, using experimental binding energies whenever available
- No pairing \Rightarrow not adequate to describe heat capacity of the crust

• Unbound nucleons (gas): non-relativistic density functional

$$\mathcal{E}_{gas} = 2 \sum_{q=n,p} \int_{0}^{\infty} \frac{d\mathbf{p}}{h^{3}} f_{q} \frac{p^{2}}{2m_{q}^{*}} + \mathscr{E}_{Sky}^{pot} \quad (\mathsf{SLy4 Skyrme effective interaction})$$

• Clusters partition function (Fisher's hypothesis): $Z_{cl} = \sum_{n_A} \prod_{A>1} \frac{\omega_A^{n_A}}{n_A!}$

$$\begin{split} &\omega_{A,Z} \propto exp\left[-\frac{1}{TV_{WS}}((E_{A,Z}-TS_{A,Z})_{WS}-\mu A-\mu_3(N-Z)\right] \\ &E_{A,Z}=E_{A,Z}^{vac}+\langle E_{A,Z}^*\rangle_T+E_{A,Z}^{coul} \end{split}$$

- $E_{A,Z}^{vac}$: Liquid Drop Model parameters fitted on SLy4 HF calculations [P. Danielewicz and J. Lee, Nucl. Phys. A 818 (2009)]
- Light clusters underbound by formula ⇒ two parameterizations adopted:
 - LDM, using functional for each cluster
 - EXP + LDM, using experimental binding energies whenever available
- No pairing \Rightarrow not adequate to describe heat capacity of the crust

Pairing model for superfluid unbound neutrons

• Zero range pairing effective interaction

$$V_{\pi}(\mathbf{r}_i,\mathbf{r}_j) = \frac{1}{2}(1-P_{\sigma})v_{\pi}(\rho_n)\delta(\mathbf{r}_{ij})$$

BCS approx.: density/gap equations

$$\rho_n = \frac{(2m_n^*)^{3/2}}{4\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right) \right]$$
$$1 = -v_{\pi}(\rho_n) \frac{(2m_n^*)^{3/2}}{8\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \frac{\sqrt{\epsilon}}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right)$$

$$E_{\Delta} = \sqrt{\xi^2 + \Delta^2}, \qquad \xi = \epsilon - \mu_n^*, \qquad \mu_n^* = \mu_n - U_n$$

• $T = 0 \Rightarrow$ strength $v_{\pi}(\rho_n)$

$$v_{\pi}(\rho_n) = V_{\pi}^{\Lambda} \left[1 - \eta \left(\frac{\rho_n}{\rho_0} \right)^{\alpha} \right]$$

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Pairing model for superfluid unbound neutrons

• Zero range pairing effective interaction

$$V_{\pi}(\mathbf{r}_i,\mathbf{r}_j) = \frac{1}{2}(1-P_{\sigma})v_{\pi}(\rho_n)\delta(\mathbf{r}_{ij})$$

BCS approx.: density/gap equations

$$\rho_n = \frac{(2m_n^*)^{3/2}}{4\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right) \right]$$
$$1 = -v_{\pi}(\rho_n) \frac{(2m_n^*)^{3/2}}{8\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \frac{\sqrt{\epsilon}}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right)$$

• • **=** • • **=**

- $E_{\Delta} = \sqrt{\xi^2 + \Delta^2}, \qquad \xi = \epsilon \mu_n^*, \qquad \mu_n^* = \mu_n U_n$
- $T = 0 \Rightarrow$ strength $v_{\pi}(\rho_n)$

$$\mathbf{v}_{\pi}(\rho_n) = V_{\pi}^{\Lambda} \left[1 - \eta \left(\frac{\rho_n}{\rho_0} \right)^{\alpha} \right]$$

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Pairing model for superfluid unbound neutrons

• Zero range pairing effective interaction

$$V_{\pi}(\mathbf{r}_i,\mathbf{r}_j) = \frac{1}{2}(1-P_{\sigma})v_{\pi}(\rho_n)\delta(\mathbf{r}_{ij})$$

BCS approx.: density/gap equations

$$\rho_n = \frac{(2m_n^*)^{3/2}}{4\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right) \right]$$
$$1 = -v_{\pi}(\rho_n) \frac{(2m_n^*)^{3/2}}{8\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \frac{\sqrt{\epsilon}}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right)$$

$$E_{\Delta} = \sqrt{\xi^2 + \Delta^2}, \qquad \xi = \epsilon - \mu_n^*, \qquad \mu_n^* = \mu_n - U_n$$

• $T = 0 \Rightarrow$ strength $v_{\pi}(\rho_n)$

$$v_{\pi}(\rho_n) = V_{\pi}^{\Lambda} \left[1 - \eta \left(\frac{\rho_n}{\rho_0} \right)^{lpha} \right]$$

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Pairing model for superfluid unbound neutrons

• Zero range pairing effective interaction

$$V_{\pi}(\mathbf{r}_i,\mathbf{r}_j) = \frac{1}{2}(1-P_{\sigma})v_{\pi}(\rho_n)\delta(\mathbf{r}_{ij})$$

BCS approx.: density/gap equations

$$\rho_n = \frac{(2m_n^*)^{3/2}}{4\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh\left(\frac{E_\Delta}{2T}\right) \right]$$
$$1 = -v_\pi (\rho_n) \frac{(2m_n^*)^{3/2}}{8\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_\Lambda} d\epsilon \frac{\sqrt{\epsilon}}{E_\Delta} \tanh\left(\frac{E_\Delta}{2T}\right)$$
$$E_{\mu} = \sqrt{\epsilon^2 + \Delta^2} \qquad \epsilon = \epsilon_{\mu\nu}^* + \epsilon_{\mu\mu}^* + \epsilon_{\mu\nu}^* + \epsilon_{\mu\nu}^* + \epsilon_{\mu\nu}^* + \epsilon_{\mu\nu}^* + \epsilon_{\mu\nu}^* + \epsilon_{\mu\nu}^* + \epsilon_{\mu\mu}^* + \epsilon_$$

$$E_{\Delta} = \sqrt{\xi^2 + \Delta^2}, \qquad \xi = \epsilon - \mu_n^*, \qquad \mu_n^* = \mu_n - U_n$$

• $T = 0 \Rightarrow$ strength $v_{\pi}(\rho_n)$

$$v_{\pi}(\rho_n) = V_{\pi}^{\Lambda} \left[1 - \eta \left(\frac{\rho_n}{\rho_0} \right)^{lpha}
ight]$$

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

Pairing model for superfluid unbound neutrons

• Zero range pairing effective interaction

$$V_{\pi}(\mathbf{r}_i,\mathbf{r}_j) = \frac{1}{2}(1-P_{\sigma})v_{\pi}(\rho_n)\delta(\mathbf{r}_{ij})$$

BCS approx.: density/gap equations

$$\rho_n = \frac{(2m_n^*)^{3/2}}{4\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_\Lambda} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_\Delta} \tanh\left(\frac{E_\Delta}{2T}\right) \right]$$
$$1 = -v_\pi(\rho_n) \frac{(2m_n^*)^{3/2}}{8\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_\Lambda} d\epsilon \frac{\sqrt{\epsilon}}{E_\Delta} \tanh\left(\frac{E_\Delta}{2T}\right)$$
$$E_{\mu} = \sqrt{\epsilon^2 + \Delta^2} \qquad \xi = \epsilon_{\mu} u^* = u^* = u^* = u^*$$

$$E_{\Delta} = \sqrt{\xi^2 + \Delta^2}, \qquad \xi = \epsilon - \mu_n^*, \qquad \mu_n^* = \mu_n - U_n$$

• $T = 0 \Rightarrow$ strength $v_{\pi}(\rho_n)$

$$v_{\pi}(
ho_n) = V_{\pi}^{\Lambda} \left[1 - \eta \left(rac{
ho_n}{
ho_0}
ight)^{lpha}
ight]$$

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

• $T \neq 0 \Rightarrow \Delta(T)$

Pairing model for superfluid unbound neutrons

• Zero range pairing effective interaction

$$V_{\pi}(\mathbf{r}_i,\mathbf{r}_j) = \frac{1}{2}(1-P_{\sigma})v_{\pi}(\rho_n)\delta(\mathbf{r}_{ij})$$

BCS approx.: density/gap equations

$$\rho_n = \frac{(2m_n^*)^{3/2}}{4\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right) \right]$$
$$1 = -\nu_{\pi}(\rho_n) \frac{(2m_n^*)^{3/2}}{8\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \frac{\sqrt{\epsilon}}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right) \right]$$

$$E_{\Delta} = \sqrt{\xi^2 + \Delta^2}, \qquad \xi = \epsilon - \mu_n^*, \qquad \mu_n^* = \mu_n - U_n$$

• $T = 0 \Rightarrow$ strength $v_{\pi}(\rho_n)$

$$v_{\pi}(
ho_n) = V_{\pi}^{\Lambda} \left[1 - \eta \left(rac{
ho_n}{
ho_0}
ight)^{lpha}
ight]$$

• $T \neq 0 \Rightarrow \Delta(T)$

$$\mathcal{E}_{gas}^{\pi} = 2 \sum_{q=n,p} \int_{0}^{\Lambda} \frac{d\mathbf{p}}{h^{3}} f_{q}^{\pi} \frac{p^{2}}{2m_{q}^{*}} + \mathscr{E}_{\pi} + \mathscr{E}_{Sky}^{pot}$$

Pairing model for superfluid unbound neutrons

• Zero range pairing effective interaction

$$V_{\pi}(\mathbf{r}_i,\mathbf{r}_j) = \frac{1}{2}(1-P_{\sigma})v_{\pi}(\rho_n)\delta(\mathbf{r}_{ij})$$

BCS approx.: density/gap equations

$$\rho_n = \frac{(2m_n^*)^{3/2}}{4\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \sqrt{\epsilon} \left[1 - \frac{\xi}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right) \right]$$
$$1 = -\nu_{\pi}(\rho_n) \frac{(2m_n^*)^{3/2}}{8\pi^2\hbar^3} \int_0^{\mu_n^* + \epsilon_{\Lambda}} d\epsilon \frac{\sqrt{\epsilon}}{E_{\Delta}} \tanh\left(\frac{E_{\Delta}}{2T}\right) \right]$$

$$E_{\Delta} = \sqrt{\xi^2 + \Delta^2}, \qquad \xi = \epsilon - \mu_n^*, \qquad \mu_n^* = \mu_n - U_n$$

• $T = 0 \Rightarrow$ strength $v_{\pi}(\rho_n)$

$$v_{\pi}(
ho_n) = V_{\pi}^{\Lambda} \left[1 - \eta \left(rac{
ho_n}{
ho_0}
ight)^{lpha}
ight]$$

• $T \neq 0 \Rightarrow \Delta(T)$

$$\mathcal{E}_{gas}^{\pi} = 2\sum_{q=n,p} \int_0^{\Lambda} \frac{d\mathbf{p}}{h^3} f_q^{\pi} \frac{p^2}{2m_q^*} + \mathscr{E}_{\pi} + \mathscr{E}_{Sky}^{pot}$$

Self-consistent NSE model with pairing

• Starting point: given thermodynamic condition (ρ_B , y_p , T)

- 10 representative values for baryonic density: $10^{-5} \le \rho_B \le 10^{-1}$ fm⁻³ [Negele, J. W., Vautherin D. Nuclear Physics A (1973).]
- Neutrinoless β -equilibrium: $\mu_n = \mu_p + \mu_e \Rightarrow$ fixed y_p
- Low temperature: $0.1 \le T \le 2$ MeV
- Aim of the work: analyze how wide distribution of nuclear species and
- Comparison with microscopic FT-HFB calculations

```
[Fortin M. et al., Phys. Rev. C 82, (2010).]
```

マロト イヨト イヨト

Self-consistent NSE model with pairing

- Starting point: given thermodynamic condition (ρ_B , y_p , T)
 - 10 representative values for baryonic density: $10^{-5} \le \rho_B \le 10^{-1}$ fm⁻³ [Negele, J. W., Vautherin D. Nuclear Physics A (1973).]
 - Neutrinoless β -equilibrium: $\mu_n = \mu_p + \mu_e \Rightarrow$ fixed y_p
 - Low temperature: 0.1 \leq 7 \leq 2 MeV
- Aim of the work: analyze how wide distribution of nuclear species and
- Comparison with microscopic FT-HFB calculations

[Fortin M. et al., Phys. Rev. C 82, (2010).]

Self-consistent NSE model with pairing

- Starting point: given thermodynamic condition (ρ_B , y_p , T)
 - 10 representative values for baryonic density: $10^{-5} \le \rho_B \le 10^{-1}$ fm⁻³ [Negele, J. W., Vautherin D. Nuclear Physics A (1973).]
 - Neutrinoless β -equilibrium: $\mu_n = \mu_p + \mu_e \Rightarrow$ fixed y_p
 - Low temperature: 0.1 \leq 7 \leq 2 MeV
- Aim of the work: analyze how wide distribution of nuclear species and β-equilibrium affect superfluid properties of crust
- Comparison with microscopic **FT-HFB calculations**

```
[Fortin M. et al., Phys. Rev. C 82, (2010).]
```

Self-consistent NSE model with pairing

- **Starting point**: given thermodynamic condition (ρ_B , y_p , T)
 - 10 representative values for baryonic density: $10^{-5} \le \rho_B \le 10^{-1}$ fm⁻³ [Negele, J. W., Vautherin D. Nuclear Physics A (1973).]
 - Neutrinoless β -equilibrium: $\mu_n = \mu_p + \mu_e \Rightarrow$ fixed y_p
 - Low temperature: 0.1 \leq T \leq 2 MeV
- Aim of the work: analyze how wide distribution of nuclear species and β-equilibrium affect superfluid properties of crust
- Comparison with microscopic FT-HFB calculations

[Fortin M. et al., Phys. Rev. C 82, (2010).]

くほし くほし くほし

Main results: inner crust composition

 $\rho_B = 2.03 \times 10^{-2} \text{ fm}^{-3}$ (Cell_{NV} 2): Gas densities and chemical potentials

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

- $T \approx 0 \rightarrow$ Single Nucleus Approximation
- Higher $T \rightarrow$ wide clusters distribution
- EXP + LDM: sharp transition heavy/light clusters dominance

LDM: smooth transition heavy/light clusters dominance

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

- $T \approx 0 \rightarrow$ Single Nucleus Approximation
- Higher $T \rightarrow$ wide clusters distribution
- EXP + LDM: sharp transition heavy/light clusters dominance
- LDM: smooth transition heavy/light clusters dominance

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

- $T \approx 0 \rightarrow$ Single Nucleus Approximation
- Higher $T \rightarrow$ wide clusters distribution
- EXP + LDM: sharp transition heavy/light clusters dominance

LDM: smooth transition heavy/light clusters dominance

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

- $T \approx 0 \rightarrow$ Single Nucleus Approximation
- Higher $T \rightarrow$ wide clusters distribution
- EXP + LDM: sharp transition heavy/light clusters dominance
- LDM: smooth transition heavy/light clusters dominance

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

- $T \approx 0 \rightarrow$ Single Nucleus Approximation
- Higher $T \rightarrow$ wide clusters distribution
- EXP + LDM: sharp transition heavy/light clusters dominance
- LDM: smooth transition heavy/light clusters dominance

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

- $T \approx 0 \rightarrow$ Single Nucleus Approximation
- Higher $T \rightarrow$ wide clusters distribution
- EXP + LDM: sharp transition heavy/light clusters dominance
- LDM: smooth transition heavy/light clusters dominance

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

- $T \approx 0 \rightarrow$ Single Nucleus Approximation
- Higher $T \rightarrow$ wide clusters distribution
- EXP + LDM: sharp transition heavy/light clusters dominance
- LDM: smooth transition heavy/light clusters dominance

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard

Inclusion of pairing on neutron gas Specific heat of NS inner crust

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main results: energy and specific heat

Total energy density

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: energy and specific heat

Specific heat

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: importance of β -equilibrium

Total energy density

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: importance of β -equilibrium

Specific heat

Main results: importance of β -equilibrium

Specific heat and isotopic distribution

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Comparison with HFB calculations

- Different gap but good agreement
- Smooth transition ⇒in-medium effects
- Importance of gap and beta-equilibrium

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard Impact of pairing on properties of stellar matter

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Comparison with HFB calculations

- Different gap but good agreement
- Smooth transition ⇒in-medium effects
- Importance of gap and beta-equilibrium

イロト イポト イヨト イヨト

э

Burrello S., Colonna M., Gulminelli F., Raduta A., Aymard Impact of pairing on properties of stellar matter

Final remarks and conclusions

Summary

- Heat capacity in the NS inner crust
- Complete distribution of nuclear species in thermal and β -equilibrium
- Pairing contribution of unbound neutrons in BCS approximation
- Clusters distribution: heavy/light dominance transition

- exotic neutron-rich resonant states

- Modification of specific heat because of β equilibrium condition
- Good agreement of extended NSE model with complete HFB calculations
- In medium effects on the clusters surface (in progress...)

Final remarks and conclusions

Summary

- Heat capacity in the NS inner crust
- Complete distribution of nuclear species in thermal and β -equilibrium
- Pairing contribution of unbound neutrons in BCS approximation
- Clusters distribution: heavy/light dominance transition

- exotic neutron-rich resonant states

- Modification of specific heat because of β equilibrium condition
- Good agreement of extended NSE model with complete HFB calculations
- In medium effects on the clusters surface (in progress...)

4月22 4 3 2 4 3 5 4 3 5 4

Final remarks and conclusions

Summary

- Heat capacity in the NS inner crust
- Complete distribution of nuclear species in thermal and β -equilibrium
- Pairing contribution of unbound neutrons in BCS approximation
- Clusters distribution: heavy/light dominance transition
 exotic neutron-rich resonant states
- Modification of specific heat because of β equilibrium condition
- Good agreement of extended NSE model with complete HFB calculations
- In medium effects on the clusters surface (in progress...)

Final remarks and conclusions

Summary

- Heat capacity in the NS inner crust
- Complete distribution of nuclear species in thermal and β -equilibrium
- Pairing contribution of unbound neutrons in BCS approximation

Main results

- Clusters distribution: heavy/light dominance transition
 exotic neutron-rich resonant states
- Modification of specific heat because of β equilibrium condition
- Good agreement of extended NSE model with complete HFB calculations
- In medium effects on the clusters surface (in progress...)

Final remarks and conclusions

Summary

- Heat capacity in the NS inner crust
- Complete distribution of nuclear species in thermal and β -equilibrium
- Pairing contribution of unbound neutrons in BCS approximation

Main results

- Clusters distribution: heavy/light dominance transition
 exotic neutron-rich resonant states
- Modification of specific heat because of β equilibrium condition
- Good agreement of extended NSE model with complete HFB calculations
- In medium effects on the clusters surface (in progress...)

Final remarks and conclusions

Summary

- Heat capacity in the NS inner crust
- Complete distribution of nuclear species in thermal and β -equilibrium
- Pairing contribution of unbound neutrons in BCS approximation

Main results

- Clusters distribution: heavy/light dominance transition
 exotic neutron-rich resonant states
- Modification of specific heat because of β equilibrium condition
- Good agreement of extended NSE model with complete HFB calculations

In medium effects on the clusters surface (in progress...)

Final remarks and conclusions

Summary

- Heat capacity in the NS inner crust
- $\bullet~$ Complete distribution of nuclear species in thermal and $\beta\text{-equilibrium}$
- Pairing contribution of unbound neutrons in BCS approximation

Main results

- Clusters distribution: heavy/light dominance transition
 exotic neutron-rich resonant states
- Modification of specific heat because of β equilibrium condition
- Good agreement of extended NSE model with complete HFB calculations

Further developments and outlooks

• In medium effects on the clusters surface (in progress...)

Final remarks and conclusions

Summary

- Heat capacity in the NS inner crust
- Complete distribution of nuclear species in thermal and β -equilibrium
- Pairing contribution of unbound neutrons in BCS approximation

Main results

- Clusters distribution: heavy/light dominance transition
 exotic neutron-rich resonant states
- Modification of specific heat because of β equilibrium condition
- Good agreement of extended NSE model with complete HFB calculations

Further developments and outlooks

• In medium effects on the clusters surface (in progress...)

THANK YOU!

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: inner crust composition

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: inner crust composition

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: inner crust composition

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: inner crust composition

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: inner crust composition

Inclusion of pairing on neutron gas Specific heat of NS inner crust

Main results: inner crust composition

