Alpha-particle clustering in excited expanding self-conjugate nuclei

⁴⁰Ca+¹²C, 25 AMeV with CHIMERA multidetector

Motivations: theoretical calculations predict that at low density alpha-conjugate nuclei spontaneously cluster into alpha-particles

Constrained Hartree-Fock-Bogoliubov approach ¹⁶O, ²⁰Ne ... Deformation-constrained self-consistent relativistic Hartree-Bogoliubov (RHB) model

FIG. 3: (Color online) Self-consistent intrinsic nucleon density of 16 O for a radius constrained to 3.32 fm (a) and 3.34 fm (b).

FIG. 5 (color online). Equation of state for a choice of selfconjugate nuclei (EOS-A) as a function of average density scaled by the one at equilibrium; see text for detailed definition.

M. Girod and P. Schuck, PRL 111 (2013) 132503

J.-P. Ebran et al., PRC 89 031303(R) 2014

NN2015

Experimental strategy

We search for a possible simultaneous emission of alpha-particles from excited expanding alpha-conjugate nuclei

intermediate energy HI reactions to possibly produce
 some hot expanding projectile fragmentation products
 → ⁴⁰Ca + ¹²C at 25 MeV per nucleon
 associated with high detection granularity (CHIMERA) to precisely reconstruct velocity vectors

Well known that around 25-30 AMeV incident energy fragmentation of ²⁰Ne projectiles is dominated by alpha-conjugate fragmentation products ¹⁶O, ¹²C... M. Morjean et al., NPA 438 1985 547

CHIMERA experiment

Beam intensity: 10⁷ ions/s thin target 320µg/cm² Angular range used: Θ=1-62° => 816 telescopes Si ≈ 200-300 µm CsI(Tl) from 12 to 3 cm

Identification in Z and A for the energy range of interest

alpha-particles: dedicated energy calib. of CsI(Tl) from time of flight energy resolution 1-2.5%

NN2015

Overview of event reconstruction/identification

grazing angle = 1.11° - ring 1I (1.0°-1.8°) suppressed

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY Selected mechanism - Proj. Frag. (PF) Z_{tot}=20 Selected events: (M_{alpha}=4,5,6) + only 1 frag.(Z_{frag}=20-2xM_{alpha})

distribution of A_{frag} for Z_{frag} =8 and M_{alpha} =6 neutron transfers-less than 5%

M_{alpha} => Na system ?

Some a-particles from preequil. Some a-particles from ¹²C*,¹⁶O* either fragments or emitted from Na systems about 10% of events removed

PF: 2 fragments (frag. and Na system)

or Projectile deexcitation (residue and evaporated a-particles) ?

Na systems - E* distribution and minimal average density

200 E* (MeV)

<E*/A> : 3.3 -> 3.5 MeV

Low density EoS of finite nuclear systems:

 $(E/A)_{T=0} = 8 [(1-\rho/\rho_0)^2 - 1]$

(W. Friedman PRC 42 (1990) 667)

Minimal average density estimate ≈ 0.7p₀

NN2015

Information on reaction mechanisms involved for the reaction used

- grazing angular momentum l_{max}=90ħ , l_{fus}=35ħ (total fusion) and l_{cf}=24ħ (complete fusion) - P. Eudes et al. PRC 90 (2014) 034609
- for PF events (Z_{PF}=20) major features are reproduced by a model of stochastic transfers - L. Tassan-Got et al. NPA 524 (1991)

Are a-particles emitted sequentially from excited projectiles ? Are a-particles emitted sequentially or simultaneously from Na systems ?

Comparison to simulations with exp.velocity dist., exp. E* dist., ang.moment. dist.

Results of simulations

filtered by the multidetector replica including detection and identification details

Sequential emission: GEMINI++ code Hauser-Feschbach formalism for evap. of particles (Z<5) n, p, t, ³He, a-particle, ⁶He, ⁶⁻⁸Li and ⁷⁻¹⁰Be Transition state formalism for fragments (Z>4) NN2015

Hypothesis: the associated fragment is the evaporation residue of excited Ca projectiles (E*= E*(Na) + E_{rel} +Q)

GEMINI (histograms): reconstructed exp. E* as input

 $^{24}Mg + 4a$ $^{20}Ne + 5a$ $^{16}O + 6a$

Are a-particles emitted sequentially or simultaneously from Na systems/sources ?

Simultaneous emission mimics a situation in which a clusters are early formed when the Na system is expanding (theoretical predictions) due to thermal pressure.

i) Na system splitted into N a in a freeze-out volume V_{fo} estimated by V_{fo} =($\rho_0/\rho)V_0$

ii) an average Coulomb energy $V_{\rm C}$ at freeze-out is calculated by randomly localizing a-particles in $V_{\rm fo}$

iii) the remaining available energy (E^*+Q-V_c) is randomly shared among the N a-particles such as to conserve energy and linear momentum J.A. Lopez and J. Randrup, NPA 491 (1989) 477

iiii) particles are propagated in the Coulomb field

NN2015

Na systems (¹⁶O*, ²⁰Ne*, ²⁴Mg*) - energy spectra

Na systems (¹⁶O*, ²⁰Ne*, ²⁴Mg*) - energy spectra

Simultaneous emission

GEMINI

NN2015

Conclusions

- The reaction ⁴⁰Ca+¹²C at 25 MeV/nucleon was used to produce and carefully select minor classes of events from which excited Na sources can be unambiguously identified.
- Their E^{*} distributions are derived with mean values around 3.5 MeV per nucleon, which indicates that mean densities around about 0.7 the normal density have been reached.
 - Their energetic emission properties have been compared with two simulations
 - sequential decay (GEMINI++): energy spectra => rather poor agreement with data ⁸Be production => total disagreement

simultaneous decay from expanding alpha-conjugate nuclei: energy spectra => good agreement with data ⁸Be production => out of the scope of the simulation

Evidence in favour of simultaneous emission (alpha-particle clustering) from expanding alpha-conjugate nuclei

B. Borderie^a, Ad. R. Raduta^{a,b}, G. Ademard^a, M. F. Rivet^a, E. De Filippo^c, E. Geraci^{c,d,e}, N. Le Neindre^{a,f}, R. Alba^g, F. Amorini^g, G. Cardella^c, M. Chatterjee^h, D. Guinetⁱ, P. Lautesseⁱ, E. La Guidara^{c,j}, G. Lanzalone^{g,k}, G. Lanzano^{c,1}, I. Lombardo^{g,d}, O. Lopez^f, C. Maiolino^g, A. Pagano^c, S.
Pirrone^c, G. Politi^{c,d}, F. Porto^{g,d}, F. Rizzo^{g,d}, P. Russotto^{g,d}, J.P. Wieleczko^l

^aInstitut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, Orsay, France ^bNational Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania ^cINFN, Sezione di Catania, Italy

^dDipartimento di Fisica e Astronomia, Università di Catania, Italy ^eINFN, Sezione di Bologna and Dipartimento di Fisica, Università di Bologna, Italy ^fLPC, CNRS/IN2P3, Ensicaen, Université de Caen, Caen, France ^gINFN, Laboratori Nazionali del Sud, Catania, Italy ^hSaha Institute of Nuclear Physics, Kolkata, India ⁱInstitut de Physique Nucléaire, CNRS/IN2P3, Université Claude Bernard Lyon 1, Villeurbanne, France ^jCSFNSM, Catania, Italy ^kUniversità di Enna "Kore", Enna, Italy ^lGANIL, (DSM-CEA/CNRS/IN2P3), Caen, France

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY