

Low-lying 1⁻ and 2⁺ states in ¹²⁴Sn via inelastic sc attering of ¹⁷O

LunaPellegri*University of Milano– INFN sez. of Milano

^{*} Present affiliation: University of Witswatersrand and iThemba LABS, South Africa

Physics Motivation: PYGMY DIPOLE RESONANCE

- Selectivity in the population of these "pygmy" states has been observed
- the **low-energy states** are of **isoscalar nature** and their transition density is peaked on the surface, while the **high-energy states** are of **isovector nature** and are associated to a transition towards the IVGDR.

It is interesting to study the PDR states with isoscalar probes in different mass regions

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

Physics Motivation: INELASTIC SCATTERING

- Dominant **ISOSCALAR** excitation
- Interaction SURFACE PEAKED (e.g. α , ¹⁷O) Gamma decay to the g.s. – selectivity to E1

Why is it interesting to use a probe that interacts mainly at the surface?

Transition densities:

n and p transition densities are in phase inside the nucleus; at the surface only the **neutron part** survives

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

EXPERIMENTAL TECNIQUE

Inelastic scattering of ¹⁷O (a) 20 MeV/u on different targets + γ -rays in coincidence

Two experiments performed at LNL:

- 1) Inelastic scattering on ²⁰⁸Pb, ⁹⁰Zr
- 2) Inelastic scattering on ²⁰⁸Pb, ¹²⁴Sn, ¹⁴⁰Ce (with improved experimental setup)

Experimental set-up

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

- Large cross-section for the population of the high lying states
- > ¹⁷O is loosely bound ($S_n = 4.1 \text{ MeV}$)
- Clean removal of projectile excitation
- harpoonup 124Sn target thickness 3 mg/cm²

PYGMY STATES

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

ANGULAR DISTRIBUTION

Angular Distribution of gamma rays obtained exploiting position sensitivity of AGATA and Silicon detectors \rightarrow almost a continuous pattern

NATURE OF THE PDR

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

CROSS SECTIONS FOR THE PYGMY STATES

DWBA calculations performed with only the isovector form factor with the B(E1) measured in electromagnetic excitation \rightarrow The calculations account only for the 10% of the measured yield

Main contribution comes from the isoscalar nuclear part

DWBA calculation performed using a **microscopic form factor based on the transition density** obtained with a microscopic model (RQTBA)

the value of the ISEWSR strength is 1.5(0.2)% for the sum of the measured discrete states in the interval 5.5–7 MeV.

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

PYGMY QUADRUPOLE RESONANCE?

Is the presence of a neutron or proton skin affecting excitations of other multipolarities and vice versa?

Theoretical predictions (using HFB and QRPA approaches) for Tin isotopic chain show a concentration of low-energy electric quadrupole strength located much below the Isoscalar Giant Quadrupole Resonance (ISGQR) \rightarrow Pygmy quadrupole resonance (PQR)?

Features:

- the microscopic structure of the QRPA 2⁺ states is predominantly of neutron character
- Increase of the low-energy B(E2) strength with neutron number
- Change from a neutron PQR to a proton PQR in the isotopes lighter than ¹⁰⁴Sn, similarly to the PDR case

N. Tsoneva et al. - Phys Lett B 695 (2011) 174-180

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

2⁺ STATES OBSERVED

Experimentally, we have observed several 2^+ states below the neutron separation energy

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

MULTIPOLARITY OF THE 2⁺ STATES

The measurement of the γ decay of these observed states allowed to assign a well-defined multipolarity for the first time.

L. Pellegri - submitted to PRC

The unknown transitions are of electric quadrupole multipolarity

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy

COMPARISON WITH THE CALCULATIONS

- Presence of a number of 2⁺ states grouping together in the energy region 3-5 MeV supporting the prediction of the HFB+QPM model.
- This quadrupole strength clustering appears to be similar to the known Pygmy Dipole Resonance at 5-7 MeV.
- The microscopic analysis of these 2⁺ states reveal that they have a unique **structure closely connected with excitation of the neutron skin**

First evidence for excitation of pygmy states of quadrupole character in ¹²⁴Sn and thus that the neutron skin can also have vibrations of quadrupole type.

SUMMARY

Investigation of <u>the isospin character of low-lying 1⁻ states</u> in ¹²⁴Sn in the region below the neutron binding energy:

- The data are in remarkable agreement with a previous experiment using the $(\alpha, \alpha' \gamma)$ inelastic scattering reaction showing a **different character for these pygmy states.**
- This experiment provided the isoscalar strength distribution of the pygmy states.
- From the comparison between DWBA analysis performed with a microscopic form factor and the measured cross sections one can deduce that the pygmy states ¹²⁴Sn are associated with the excitation of surface neutrons, mainly those in the neutron skin.

Investigation of <u>low-lying 2^+ states</u> in ¹²⁴Sn in the region below the neutron binding energy:

- A group of 2⁺ states with excitation energy at 3-5 MeV for which only the energy (and not the spin) was previously known was identify.
- The spin assignment was unambiguously made via the measurement of the angular distribution of the γ rays de-exciting these states.
- Evidence for excitation of pygmy states of quadrupole character in ¹²⁴Sn and thus that the neutron skin can also have vibrations of quadrupole type.

List of Collaborators:

L. Pellegri ^{a,b}, A. Bracco ^{a,b,*}, F.C.L. Crespi ^{a,b}, S. Leoni ^{a,b}, F. Camera ^{a,b}, E.G. Lanza ^c, M. Kmiecik ^d, A. Maj ^d, R. Avigo ^{a,b}, G. Benzoni ^a, N. Blasi ^a, C. Boiano ^a, S. Bottoni ^{a,b}, S. Brambilla ^a, S. Ceruti ^{a,b}, A. Giaz ^a, B. Million ^a, A.I. Morales ^{a,b}, R. Nicolini ^{a,b}, V. Vandone ^{a,b}, O. Wieland ^a, D. Bazzacco ^e, P. Bednarczyk ^d, M. Bellato ^e, B. Birkenbach ^f, D. Bortolato ^{e,g}, B. Cederwall ^h, L. Charles ⁱ, M. Ciemala ^d, G. De Angelis ^j, P. Désesquelles ^k, J. Eberth ^f, E. Farnea ^e, A. Gadea ¹, R. Gernhäuser ^m, A. Görgen ⁿ, A. Gottardo ^{g,j}, J. Grebosz ^d, H. Hess ^f, R. Isocrate ^e, J. Jolie ^f, D. Judson ^o, A. Jungclaus ^p, N. Karkour ^k, M. Krzysiek ^d, E. Litvinova ^{q,r}, S. Lunardi ^{e,g}, K. Mazurek ^d, D. Mengoni ^{e,g}, C. Michelagnoli ^{e,g,1}, R. Menegazzo ^{e,g}, P. Molini ^{e,g}, D.R. Napoli ^j, A. Pullia ^{a,b}, B. Quintana ^s, F. Recchia ^{e,g}, P. Reiter ^f, M.D. Salsac ^t, B. Siebeck ^f, S. Siem ⁿ, J. Simpson ^u, P.-A. Söderström ^{v,2}, O. Stezowski ^{w,x,y}, Ch. Theisen ^t, C. Ur ^e, J.J. Valiente Dobon ^j, M. Zieblinski ^d

L. Pellegri,^{1,2,*} A. Bracco,^{1,2,†} N. Tsoneva,^{3,4} R. Avigo,^{1,2} G. Benzoni,² N. Blasi,² S. Bottoni,^{1,2} F. Camera,^{1,2} S. Ceruti,^{1,2} F.C.L. Crespi,^{1,2} A. Giaz,² S. Leoni,^{1,2} H. Lenske,³ B. Million,² A.I. Morales,^{1,2} R. Nicolini,^{1,2} O. Wieland,² D. Bazzacco,⁵ P. Bednarczyk,⁶ B. Birkenbach,⁷ M. Ciemała,^{6,‡} G. de Angelis,⁸ E. Farnea,⁵ A. Gadea,⁹ A. Görgen,¹⁰ A. Gottardo,^{11,8} J. Grebosz,⁶ R. Isocrate,⁵ M. Kmiecik,⁶ M. Krzysiek,⁶ S. Lunardi,^{11,5} A. Maj,⁶ K. Mazurek,⁶ D. Mengoni,^{11,5} C. Michelagnoli,^{11,5,‡} D.R. Napoli,⁸ F. Recchia,^{11,5} B. Siebeck,⁷ S. Siem,¹⁰ C. Ur,⁵ and J.J. Valiente-Dobón⁸

Thank you for the attention

12th International Conference on Nucleus-Nucleus Collisions – Catania, Italy