

Nucleus Nucleus 2015 21-26 June 2015 Dipartimento di Fisica ed Astronomia, Università di Catania

..... some selected highlights since NN2012

Angela Bracco

Università di Milano and INFN

Interlinks of these fields to address questions such as :

0

P

- What is the influence of meson and hadron properties in the Quark gluon plasma
- What are the nuclear structure effects influencing the nucleosynthesis and low energy nuclear reactions?

Ultra relativistic heavy ion collisions

From the beginning

the big bang

the hot compressed matter and the properties of the hot quark gluon plasma

Heavy ion Collisions : matter under extreme conditions

What do we want to learn from HIC ?

Some results

Future

The Exploring QCD under extreme conditions, where the strong interaction is really strong,

expectations & predictions :

weakly interacting plasma / ideal gas of (quasifree) quarks & gluons

partons are **deconfined**

(not bound into composite color neutral hadrons)

The

tools

chiral symmetry is restored

(partons ≈ massless, vanishing gluon condensate)

Relevant degrees of freedom (and experimental observables) at high T : ordinary hadrons are not sufficient

Heavy ion Collisions : matter under extreme conditions

Very strongly interacting, almost perfect liquid': sQGP

state, event-by-event !

2010-11-08 1 Fill : 1482 Run : 13712

Heavy ion Collisions : quark deconfinement

Heavy ion Collisions : matter under extreme conditions

Heavy ion Collisions at 2GeV/u : strangeness production

⁶Li +¹²C invariant mass distributions of d + π and \dagger + π

Properties of Λ - n for Neutron stars

Lifetime estimation of the possible bound states yielding $d + \pi$ $t + \pi$

181**+/-**30 ps and 190**+/-**47 ps

(260 ps lifetime of Lambda)

Mesonic weak decay $\cdot \Lambda \rightarrow \pi^{-} + p$ Non-mesonic weak-decay $\cdot \Lambda p \rightarrow np$ harget A-Hypernucleus Scintillators + diamond Trackers N-detector K' counter

These states may be interpreted as the 2-body and 3-body decay of a neutral bound state : 2 neutrons and a hyperon, 3 $_{\Lambda}$ n-

Equation of state of Nuclear matter and neutron stars

EOS :

Constrains from isoscalar modes, as the GMR (nuclear compressibility , heavy ion collisions)

Recent result on ⁶⁸Ni for the GMR (GANIL- Active target Maya and RIB at 50 MeV/u)

EOS Asymmetric term constrained by :

- Heavy Ion collisions
- Neutron Skin polarizability (GDR and pygmy) P-REX experiments
- Nuclear masses

Heavy ion Collisions and the nuclear equation of state

Thermodynamic and the bulk nuclear properties

is relevant in heavy ion collisions and environments of

nucleosynthesis.

Evidence also of effects of **clusterization** on the Low-Density (see e.g. J P-G41 (2014) 075108- (LNL) and J. P. G. 420(2013) 012087 from LNS)

Equation-of-State : (see K. Hagel, J.B. Natowitz and G. Roepke, EPJA A 50 39-1 - 39-16 (2014)-For fluctuation and symmetry energy in nuclear fragmentation dynamics see M. Colonna, PRL110,042701(2013)

Neutron skin and its properties(pygmy-polarizability)

Light nuclei : ab initio calculations 2N and 3N interactions

To be studied:

methds with chiral

interactions

Halo, radii, skins

low energy scattering, break up high energy cross sections

- Binding energies (masses)
- The coupling of loosely bound nuclei to the continuum g.s and ex. resonances in very short lived b.s. (di-n and di-p decay)
- Excited states of light nuclei
- moments from measurements in traps

Exp.

NN

NN+3nf

NN+3nf +cont

Light nuclei : resonances and the continuum

Hoyle states ¹²C

Particular attention to the problem of alpha clustering and of Hoyle states:

- 3 alpha decay
- Excited bands
- Form factors

Hoyle state E0 form factor with Quantum Monte Carlo

Great success for theory!

Nuclear structure - progress on:

Maria Goepper Mayer Different excitation modes. Their properties need for description:

Configuration interactions

Density Functional Theory

Dynamical symmetries

Far from stability - New shells and new magic numbers

Super heavy

shell disappearance shell robustness

beyond p drip line

Deformation- shape transition
Shape coexistance

- Collective effects and particle vibration coupling
- Pairing interaction

New Shell Closures N = 32 & 34: the Ca - Ni Region

Quenching of shell, and robust shell closure

¹³²Sn From ¹⁰⁰Sn Shell energy 60 Tin region 50 -6 -9 -12 umber 0.07 PRL112(2014)172701 60 80 40 (a) Ring (b) Ring 2 $\beta = V/C$ **RISING-GSI** 0.06 -→LSSM ⁸⁰Zr qds 0.442(+102) ps 0.401 (+145) ps -LSSM ⁹⁰Zr ads 0.05 0.25 (c) Ring 3 (d) Ring 4 GS 0.07 $\beta = V/C$ B(E2;0⁺ --> 2⁺) [e²b²] IUAC 0.20 REX-ISOLDE △ MSU 0.06 0.486(+17 0.685(+543) ps GSI-DSA 0.15 0.01 0.1 10 0.01 0.1 1 τ (ps) τ (ps) Shell N=80 in ¹³²Sn 0.10 robust N=Z as strong as in ²⁰⁸Pb 0.05 Lifetimes and cross sect. 100 102 104 106 108 110 112 ORNL PRL110(2013)172501 Isomers in Cd (RIKEN) Spin, μ (ISOLDE) PRL111(2013)212502 $\mathbb{R}_{4/2}$ Shell $quench^{\Delta}$ 2.5 Large deformations ∧R_{4/2} Si ▲ R_{4/2} Mg for Mg neutron rich 28 20 22 24 26 Neutron Number N N=

p drip line

PRL112(2014)092501

¹⁵⁸Ta is beyond proton drip line but it has a spin trap- isomer ! (multiparticle nature) γ and α decay α decay at high I Exp. JYFL

Deformation, collectivity

Evolution of collectivity- rapid shape transitions

Charged Radii of Au isotopes Hyperfine structure and alpha decay

PRC902014) 021301

Mapping Shape change Exp on Os isotopes Lifetime measured AGATA at LNL

Motivation for search for a non-zero EDM in ²²⁵Ra.

Gaffney et al., Nature 497, 199 **Exp at ISOLDE**

Search for a new type of superfuidity

PRL113(2014) 052501

Pairina from Gamow Teller Strength Rising **GSI**

Importance of pairing in the 2n cross section

E^t_x (MeV) 9.7 12.7 15.7 18.7 21.7 24.7 6.7 600 $^{13}C(^{18}O,^{16}O)^{15}C$ $\theta_{lab} = 9.5^{\circ}$ 500 400 Counts 300 200 100 0 10 12 14 16 18 E_v (MeV)

Giant pairing in ^{14,15}C ? Other cases needed to conclude nccomms7743 (2015) LNS experiment

Synthesis ⁴⁸Ca+²⁴⁹Bk (**Z= 117 fully identified**)

Chemistry

(ionization potential) Nature 520(2015) 209.

Spectroscopy of element 115

First leve interpretation From model (PRL 111(2013) 112502)

Reactions are studied

Around the barrier

Fusion Hindrance for a Positive-Qvalue ²⁴Mg + ³⁰Si LNL-PRL113(2014)022701

PRL 113(2014)182502 Interplay 139 between orientation of 16cL(ax.)c75 16cL(eq.)c35 the deformed 200nucleus a 150 100 and quantum 50 shell 02 04 06 08 Canberra-dataon quasi fission

Fusion and fission

Fusion reaction and structure at finite T - LNS PRC90(2014) 054603

Reactions

Nuclear landscape and nucleosynthesis

Reactions - Cross section measurements for astrophysics

measurements for astrophysics – via γ -ray spectroscopy

Nuclear Physics Laboratories around the world

Major upgrades and new facilities are under construction!

LNL : SPES- CYCLOTRON for the production of radioactive beams

Main Parameters

Accelerator Type	Cyclotron AVF 4 sectors
Particle	Protons (H ⁻ accelerated)
Energy	Variable within 30-70 MeV
Max Current Accelerated	750 μA (52 kW max beam power)
Available Beams	2 beams at the same energy (upgrade to different energies)
Max Magnetic Field	1.6 Tesla
RF frequency	56 MHz, 4 th harmonic mode
Ion Source	Multicusp H ⁻ I=15 mA, Axial Injection
Dimensions	Φ=4.5 m, h=1.5 m
Weight	150 tons

Cyclotron assembled and operated with 700 μA at 1MeV

Applications: in many fields

Applications in medicine get a great attention **Report**

¹⁴⁹Tb: targeted alpha therapy.2014 tests establishing safe usability limits, e.g. kidney damage

NuPECC

¹⁵⁵Tb: Very promising results about the effect of Auger electrons for therapy.

Efforts in different directions

Angela Bracco

Final concluding remarks

My presentation addresses only few of the interesting results Apologies.... Hope a flavor is givem for a very lively field!!

For this week we are looking forward for:

- Presentations of the interesting ongoing work
- Discussions for the future plans
- Active participation of students and young researchers

Many thanks to the organizers

and enjoy the NN2015 conference!!!