DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

RECENT DEVELOPMENTS IN NUCLEAR PHYSICS TOOLS AND TECHNIQUES APPLIED TO NUCLEAR ENERGY

SYLVIE LERAY CEA/SACLAY, IRFU

cea ni

NUCLEAR ENERGY

The growth expected ten years ago has not happened:

Fukushima accident Shale oil "revolution"

Source: BP statistical review of world energy 2015

Nuclear energy consumption by region Million tonnes oil equivalent

24 000

20 000

16 000

12 000

8 000

4 000

0

1971

China

OFCD

1975

1980

Increase in energy demand Increase of CO₂ emissions

Electricity

CO₂ emissions

World* CO₂ emissions** from 1971 to 2012

Source: IEA Key world energy statistics 2014

Mitigating CO₂ increase: no miracle solution but combination of

energy saving and increase of energetic efficiency but limited and counterbalanced by increase in developing countries

renewable energies but intermittent and expensive

nuclear energy but fear of accident and question of waste

2012

DENEDAV NUCLE

65 reactors in construction

- of which 23 in China, 9 in Russia, 6 in India
- 165 reactors planned
 - of which 45 in China, 31 in Russia, 22 in India

Source: **World Nuclear** Association (May 2015)

	NUCLEAR ELECTRICITY GENERATION 2014		REACTORS OPERABLE		REACTORS UNDER CONSTRUCTION Apr 2015		REACTORS PLANNED		REACTORS PROPOSED	
	billion.		Αþ	1 2013	Арі	2013	Арі	2013	Дрі	2013
COUNTRY	billion	% e	No.	MWe net	No.	MWe	No.	MWe	No.	Mive
Argonting	5 2	4.0	3	1627	1	97	0	gross	2	1600
Armonia	3.3	4.0	1	276	0	2/	1	1060	- 3	1000
Bangladesh	2.3	0	0	0	0	0	2	2400	0	0
Relarus	0	0	0	0	2	2400	0	2400	2	2400
Belgium	32.1	47.5	7	5943	0	0	0	0	0	0
Brazil	14.5	2.9	2	1901	1	1405	0	0	4	4000
Bulgaria	15.0	31.8	2	1906	0	0	1	950	0	0
Canada	98.6	16.8	19	13553	0	0	2	1500	3	3800
Chile	0	0	0	0	0	0	0	0	4	4400
China	123.8	2.4	26	23144	23	25163	45	52200	127	150000
Czech Republic	28.6	35.8	6	3766	0	0	2	2400	1	1200
Egypt	0	0	0	0	0	0	2	2400	2	2400
Finland	22.6	34.6	4	2741	1	1700	1	1200	1	1500
France	418.0	76.9	58	63130	1	1720	1	1720	1	1100
Germany	91.8	15.8	9	12003	0	0	0	0	0	0
Hungary	14.8	53.6	4	1889	0	0	2	2400	0	0
India	33.2	3.5	21	5302	6	4300	22	21300	35	40000
Indonesia	0	0	0	0	0	0	1	30	4	4000
Iran	3.7	1.5	1	915	0	0	2	2000	7	6300
Israel	0	0	0	0	0	0	0	0	1	1200
Italy	0	0	0	0	0	0	0	0	0	0
Japan	0	0	43	40480	3	3036	9	12947	3	4145
Jordan	0	0	0	0	0	0	2	2000		
Kazakhstan	0	0	0	0	0	0	2	600	2	600
Korea DPR (North)	0	0	0	0	0	0	0	0	1	950
Korea RO (South)	149.2	30.4	24	21657	4	5600	8	11600	0	0
Lithuania	0	0	0	0	0	0	1	1350	0	0
Malaysia	0	0	0	0	0	0	0	0	2	2000
Mexico	9.3	5.6	2	1600	0	0	0	0	2	2000
Netherlands	3.9	4.0	1	485	0	0	0	0	1	1000
Pakistan	4.6	4.3	3	725	2	680	0	0	2	2000
Poland	0	0	0	0	0	0	6	6000	0	0
Romania	10.8	18.5	2	1310	0	0	2	1440	1	655
Russia	169.1	18.6	34	25264	9	7968	31	32780	18	16000
Saudi Arabia	0	0	0	0	0	0	0	0	16	17000
Slovakia	14.4	56.8	4	1816	2	942	0	0	1	1200
Slovenia	6.1	37.2	1	696	0	0	0	0	1	1000
South Africa	14.8	6.2	2	1830	0	0	0	0	8	9600
Spain	54.9	20.4	7	7002	0	0	0	0	0	0
Sweden	62.3	41.5	10	9487	0	0	0	0	0	0
Switzerland	26.5	37.9	5	3333	0	0	0	0	3	4000
Thailand	0	0	0	0	0	0	0	0	5	5000
Turkey	0	0	0	0	0	0	4	4800	4	4500
Ukraine	83.1	49.4	15	13168	0	0	2	1900	11	12000
UAE	0	0	0	0	3	4200	1	1400	10	14400
United Kingdom	57.9	17.2	16	10038	0	0	4	6680		8920
USA	798.6	19.5	99	98756	5	6018	5	6063	17	26000
vietnam	0	Ö	0	0	0	0	4	4800	6	6700
WORLD**	2,411	c 11	437	380,77	65	67,859	165	185,92	316	363,57
	billion kWh	% e	No.	MWe	No.	MWe	No.	MWe	No.	MWe
	NUCLEAR ELECTRICITY GENERATION		REACTORS OPERABLE		REACTORS UNDER CONSTRUCTION		ON ORDER or PLANNED		PROPOSED	

NUCLEAR ENERGY

Nuclear energy will develop only if confidence is restored, waste question is settled, it is economically competitive, question of long term resources in uranium is adressed

Source: Nuclear Energy Today © OECD/Nuclear Energy Agency 2012

NUCLEAR WASTE MANAGEMENT

Radiotoxicity of UOX spent fuel relative to uranium ore, versus time (years)

ADS AS A POSSIBLE CONTRIBUTOR TO WASTE MINIMISATION

Accelerator

(600 MeV - 4 mA proton)

Reactor

- Subcritical mode (65 -100 MWth)
- Critical mode (~100 MWth)

NUCLEAR DATA NEEDS

NUCLEAR DATA NEEDS

- Existing, Gen-III reactors
 - Optimization of fuel burn-up
 - Increase of life time
 - Safety margin reduction: decay heat, delayed n fraction
 - 🗕 Waste disposal

Fast reactors (Gen-IV)

- New fuel, cladding, coolant materials
- Minor actinide transmutation

- Spallation target radioactive inventory
- Material damage

cross-sections

- **__** capture
- **fission**
- 🗕 inelastic, (n,2n)
- multiplicities
 - prompt and delayed neutrons
 - 🗕 delayed gammas
- characteristics of reaction products
 - Energy and angular distributions
 - fission fragments
 - spallation residues

NUCLEAR DATA NEEDS

Cez

FP7 EURATOM 2013: CHANDA PROJECT

EU funding 5.4 M€ 1/12/2013 – 30/11/2017

<u>CIEMAT</u>, ANSALDO, CCFE, CEA, CERN, CNRS, CSIC, ENEA, GANIL, HZDR, IFIN-HH, INFN, IST-ID, JRC, JSI, JYU, KFKI, NNL, NPI, NPL, NRG, NTUA, PSI, PTB, SCK, TUW, UB, UFrank, UMainz, UMan, UPC, UPM, USC, UU, UOslo.

Follow-up of the ANDES project (2010-2013)

EURATOM FP7 PROJECT CHANDA

solving CHAlenge in Nuclear DAta

- access to the available EU nuclear data facilities
- upgrade of neutron facilities (nTOF and NFS) in order to allow measurements on short lived and rare materials
- support to radioactive target fabrication laboratories

developing new methodologies and capabilities in performing measurements, evaluation and validation of nuclear data and models

nTOF CERN: Fission cross sections

²⁴¹Am(n,f) cross section σ_f VEn (b VeV 1.4 • *n* TOF Dabbs (1983) JENDL-4.0 / ENDF/B-VIL1 ENDF/B-VII.0 0.8 JEFF-3.1.2 0.6 04 0.2 2×10⁻¹ 2×10⁻² 3×10⁻² 10⁻¹ En (eV)

→ major revision from JEFF-3.1 to JEFF-3.2

From N. Colonna, CHANDA Meeting April 2015 M. Mastromarco et al., in preparation The ²⁴⁵Cm(n,f) cross-sections

M. Calviani et al., PRC 85, 034616 (2012)

NN 2015 | Catania, June 21-26, 2015 | PAGE 14

SURROGATE REACTIONS

For a review: J. Escher, Rev. Mod. Phys. 84, 353–397 (2012)

SURROGATE REACTIONS

- Measurement of capture cross-sections ?
- → Test on known lanthanide capture cross-sections shows that surrogate capture probability very different from direct reaction

 \rightarrow Difference due to different J^m population in the direct and transfer reactions and n/γ competition

Escher et al., RMP 84(2012) 353

→ Comprehensive theoretical description of direct reactions that populate highly excited states, dependence of these processes on angular momentum, parity, and energy needed

NN 2015 | Catania, June 21-26, 2015 | PAGE 16

SURROGATE REACTIONS IN CHANDA

- > Much larger differences for capture than for fission
- However large experimental uncertainties

→ New experiment at IPNO tandem with beam of higher intensity and excellent beam energy definition and with a segmented fission fragment detector NN 2015 | Catania, June 21-26, 2015 | PAGE 17

DE LA RECHERCHE À L'INDUSTRI

DECAY HEAT CALCULATIONS

- Impact : safety, shorter refueling times, optimized shielding for transport of spent fuel, storage...→ target accuracy 10%
- > need for fission yields, decay data i.e. half-lives, branching ratios, mean β , γ energies
- rightarrowTotal absorption gamma-ray spectroscopy (TAGS), using large 4π scintillation detectors
 - Jyvaskyla IGISOL separator + JYFLTRAP Penning trap for isotopic purification 0.7 = ---- : EEM ENDF/B-VII.0

→Also important for antineutrino spectra

⊘ FISSION FRAGMENT STUDIES

Isotopic fission yields from compound nuclei produced in transfer reactions at GANIL ¹²C(²³⁸U,²⁴⁰Pu)¹⁰Be, E* = 10 MeV

→ Access to nuclei above U

- E* determined assuming no excitation of the light tranfer partner
- → High resolution using inverse kinematics
- ➡ Z, A, velocity of fragments, TKE, neutron emission as a function of E*

F. Farget et al., CHANDA Meeting April 2015

FISSION FRAGMENT STUDIES

Through fission of secondary beams in the Coulomb field of a heavy target at GSI: SOFIA experiment

HIGH-ENERGY

DATA

radioactive inventory, in particular volatile elements (tritium, Kr, Xe, I, Hg, Po...)

- short-lived nuclei for maintenance operation, in case of accident
- Iong-lived nuclei for long-term disposal
- Gas production for damage in structural material, in particular helium
- Need for highly predictive models to be implemented into transport codes
- High-quality data allowing benchmarking of the models and understanding of the reaction mechanism

Modelling of spallation reactions

New high quality data

excitation function measurements at ITEP

light charged particles DDXS in neutroninduced reactions measured at Uppsala

³He DDXS in p+⁵⁶Fe, at 175 MeV

Bevilacqua et al., PRC (2015)

Excitation functions p+⁵⁶Fe, Titarenko et al.

- Development of highly predictive models
 - INCL+ABLA, CEM, FLUKA...
 - compared to all available data
 - able to predict all types of reactions and all channels

A. Boudard et al., Phys. Rev. C 87, 014606 (2013)

ClassicalTOWARDS COMPLETE
CHARACTERIZATION OF THE REACTION

- To go further in model improvement more constraining data are now required
- Need for a complete characterization of the reaction products to understand the reaction mechanism in detail
- The SOFIA setup used to study fission at high energies (see talks by J. Benlliure and J.L. Rodriguez Sanchez)

NN 2015 | Catania, June 21-26, 2015

₂о

²⁰⁹Po

²¹⁰Po

VOLATILE ELEMENT PRODUCTION

10

10⁰

10⁻¹

10⁻²

10⁻³

10⁻⁴

10-5

- (which decay to Po isotopes) mostly due to secondary reactions induced by high-energy helium ions.
- ²¹⁰Po (T_{1/2}=138 days) observed in Pb SINQ target 10 years after irradiation due to the decay of ²¹⁰Pb (T_{1/2}=22 years) formed mostly by t+²⁰⁸Pb reactions
- Improvement of the physics models which were unable to predict Z_{target}+2 isotopes Calculated/measured activity
 - → Importance of the coalescence mechanism
 - → LCP+A reactions at low energies
- Calculations: INCL4.6-ABLA07 in MCNPX2.7.b

T. Lorenz, PhD Thesis, Bern Univ.

ANTI-NEUTRINOS FOR REACTOR CONTROL

DE LA RECHERCHE À L'INDUSTRI

NEUTRINOS: A NEW PROBE FOR NEW SAFEGUARDS APPLICATIONS

et al.

Challenging reactor induced background

From A. Letourneau

 Nucifer shows a very good reliability (no fake alarm), no safety issues and stability of the light response at the 1% level after 2 years of commissioning

NUCIFER

From A. Letourneau et al.

Mean = (276 ± 14) nu/day

Power = 67.5 MW, Distance = 7 m Target volume = 1 m³

 A clear ON-OFF effect (detected in 12 hours at 95% C.L.) despite the very high background at the OSIRIS site

■ The expected renaissance has not happened but nuclear energy will very likely grow faster in the future, in particular in developing countries

Enhanced requirements for safety, economical competitiveness, minimisation / transmutation of waste imply further needs for high quality nuclear data and predictive models

Nuclear physicists have played and will still play a major role by providing facilities, innovative experimental techniques and theoretical models