

Neutron rich Lambda hypernuclei study with the FINUDA experiment

Stefania Bufalino Università and INFN, Torino

- Physics motivations
- The FINUDA experiment
- Neutron rich detection and analysis
 - ⁶_ΛH
 ⁹_ΛHe

Physics motivations

- Hypernuclei with a large neutron excess: R.H. Dalitz, R. Levi Setti., N. Cim. 30 (1963) 489, L. Majling, NP A 585 (1995) 211c, Y. Akaishi et al., Frascati Physics Series XVI (1999) 59.
- The Pauli principle does not apply to the Λ inside the nucleus + extra binding energy (Λ "glue-like" role) \Rightarrow a larger number of neutrons can be bound with respect to ordinary nuclei.
- Neutron (proton) drip-line:

response of neutron halo on embedding of Λ hyperon, hypernuclear species with unstable nuclear core, extending the neutron drip line beyond the standard limits of n-rich nuclei

Hypernuclear physics:

 Λ N interactions at low densities, the rôle of 3-body forces, nuclear core compression ($_{\Lambda}^{7}$ Li vs $_{6}^{6}$ Li: H.Tamura et al., Phys.Rev. Lett. 84 (2000) 5963)

FINUDA@DAΦNE (LNF)

Hypernuclear physics with FINUDA

- different targets in the same run
 high degree of flexibility
- coincidence measurement with large acceptance ($\Delta\Omega \sim 2\pi$ srad) complete event \blacktriangleright decay mode study
- simultaneous tracking of $\mu^{\scriptscriptstyle +}$ from the K^+ decay

n-rich hypernuclei in FINUDA

Production reaction (K^{-}_{stop}, π^{+}) $K^{-} + p \rightarrow \Lambda + \pi^{0}$ $\pi^{0} + p \rightarrow n + \pi^{+}$ (2-step)S-EX + C-EX $K^{-} + p \rightarrow K^{0} + n$ $K^{0} + p \rightarrow \Lambda + \pi^{+}$ (2-step)C-EX + S-EX $K^{-} + p \rightarrow \Sigma^{-} + \pi^{+}$ $\Sigma^{-} + p \iff n + \Lambda$ (1-step)S-EX

References

K.Kubota et al, NPA 602 (1996) 327. ⁹_ΛHe (⁹Be) U.L.=2.3 10⁻⁴/K⁻_{stop}; ¹²_ΛBe(¹²C) U.L.=6.1 10⁻⁵/K⁻_{stop}; ¹⁶_ΛC(¹⁶O) U.L.=6.2 10⁻⁵/K⁻_{stop}

PLB 640 (2006) 145: upper limits ${}^{6}_{\Lambda}H$, ${}^{7}_{\Lambda}H$ and ${}^{12}_{\Lambda}Be$ Oct 2003 - Jan 04: ~220 pb⁻¹ ${}^{6}_{\Lambda}H$ (${}^{6}Li$) U.L.= (2.5 ± 1.4) 10⁻⁵/K⁻_{stop}; ${}^{7}_{\Lambda}H({}^{7}Li)$ U.L.= (4.5± 1.4) 10⁻⁵/K⁻_s; ${}^{12}_{\Lambda}Be({}^{12}C)$ U.L.= (2.0 ± 0.4) 10⁻⁵/K⁻_{stop} (inclusive π^{+} spectra analysis)

PRL 108 (2012) 042501, NPA 881 (2012) 269: ⁶_AH observation
 PRC 86 (2012) 057301: upper limits ⁹_AHe

Coincidence measurement

Detector capabilities:

 Selective trigger based on fast scint. detectors
 precise K⁻ vertex identification (< 1 mm³) (P.ID.+ x,y,z resolution + K⁺ tagging)
 p, K, p, d, ... P.ID. (OSIM and LMDC dE/dx)
 High momentum resolution (tracker resolution + He bag + thin targets)

Nov 2006 - Jun 2007: 960 pb⁻¹

n-rich search: the idea

$$\begin{bmatrix} K^{-}_{stop} + {}^{6}Li \rightarrow {}^{6}_{\Lambda}H + \pi^{+} \\ {}^{6}_{\Lambda}H \rightarrow {}^{6}He + \pi^{-} \\ (\tau({}^{6}He) \sim 801 \text{ ms}) \end{bmatrix}$$
 if ${}^{6}_{\Lambda}H$ is a particle-stable (bound) system independent 2-body reactions: decay at rest

$$M(K^{-}) + 3 M(n) + 3M(p) - B(^{6}Li) = M(^{6}_{\Lambda}H) + T(^{6}_{\Lambda}H) + M(\pi^{+}) + T(\pi^{+})$$
$$M(^{6}_{\Lambda}H) = 4 M(n) + 2M(p) - B(^{6}He) + T(^{6}He) + M(\pi^{-}) + T(\pi^{-})$$

$$\sqrt{M^{2}(^{6}He) + p^{2}(\pi^{-})} - M(^{6}He)} \qquad \qquad \sqrt{M^{2}(^{6}_{\Lambda}H) + p^{2}(\pi^{+})} - M(^{6}_{\Lambda}H)} \\ M(^{6}_{\Lambda}H) = M(^{5}H) + M(\Lambda) - B(\Lambda) \\ M(K^{-}) + M(p) - M(n) - B(^{6}Li) + B(^{6}He) - T(^{6}He) - T(^{6}_{\Lambda}H) - M(\pi^{+}) - M(\pi^{-}) \\ M(K^{-}) + M(p) - M(n) - B(^{6}Li) + B(^{6}He) - T(^{6}He) - T(^{6}_{\Lambda}H) - M(\pi^{+}) - M(\pi^{-}) \\ M(K^{-}) + M(p) - M(n) - B(^{6}Li) + B(^{6}He) - T(^{6}He) - T(^{6}_{\Lambda}H) - M(\pi^{+}) - M(\pi^{-}) \\ M(K^{-}) + M(p) - M(n) - B(^{6}Li) + B(^{6}He) - T(^{6}He) - T(^{6}_{\Lambda}H) - M(\pi^{+}) - M(\pi^{-}) \\ M(K^{-}) + M(p) - M(n) - B(^{6}Li) + B(^{6}He) - T(^{6}He) - T(^{6}_{\Lambda}H) - M(\pi^{+}) - M(\pi^{-}) \\ M(K^{-}) + M(p) - M(n) - B(^{6}Li) + B(^{6}He) - T(^{6}He) - T(^{6}_{\Lambda}H) - M(\pi^{+}) - M(\pi^{-}) \\ M(K^{-}) + M(p) - M(n) - M(m^{-}) + M(m^{-}) + M(m^{-}) \\ M(M^{-}) + M(m^{-}) - M(m^{-}) + M(m^{-}) + M(m^{-}) + M(m^{-}) + M(m^{-}) \\ M(M^{-}) + M($$

= 203.0 \pm 1.3 MeV (203.5 \div 203.3 MeV with B_A= 0 \div 6 MeV)

cut on $T(\pi^{+}) + T(\pi^{-})$: 202÷204 MeV

T(π⁺)+**T(**π⁻) **cut**

 $T(\pi^{+})+T(\pi^{-}) = 202 \div 204 \text{ MeV}$

(260 Wentum (WeV/c) 1220 1220 1220 (260 (27) (250) (MeV/2) (MeV/2) (MeV/2) (MeV/2) (MeV/2) (MeV/2) (MeV/2) 190└--120 190^{LLL} 120 190 200 210 π^{-} momentum (MeV/c) π^- momentum (MeV/c)

 $T(\pi^{+})+T(\pi^{-}) = 200 \div 206 \text{ MeV}$

$^{6}_{\Lambda}H/K^{-}_{stop}$ production rate

Background sources:

- fake coincidences: π +(249÷255 MeV/c) & π -(130÷138 MeV/c) 0.27±0.27 ev.
- $K^{-}_{stop} + {}^{6}Li \rightarrow \Sigma^{+} + \pi^{-} + {}^{4}He + n$ $n + \pi^{+}$ (end point ~190 MeV/c) (end point ~282 MeV/c) 0.16±0.07 ev. • $K^{-}_{stop} + {}^{6}Li \rightarrow {}^{4}_{\Lambda}H + n + n + \pi^{+}$ ${}^{4}He + \pi^{-}$ (end point ~252MeV/c) $(p(\pi^{-}) = 133 \text{ MeV/c})$ negligible

${}^{6}_{\Lambda}H/K^{-}_{stop}$ production rate

Total background: BGD1 + BGD2 = 0.43 ± 0.28 events on ⁶Li Poisson statistics: 3 events DO NOT belong to pure background: C.L.= 99%

R * BR(π-) = (3 - BGD1 - BGD2) / [ε(π-) ε(π+) (n. K⁻_{stop} on ⁶Li)]

R * BR(π -) = (2.9 ± 2.0) 10⁻⁶/K⁻_{stop}

 $R = (5.9 \pm 4.0) \ 10^{-6} / K_{stop}^{-1}$

H. Tamura, et al., PRC 40 (1989) R479 BR(π -) ${}^{4}_{\Lambda}$ H = 0.49

first evidence of ⁶_AH based on 3 events that cannot be attributed to pure instrumental and physical background

kinematics

T _{tot} (MeV)	p(π ⁺) (MeV/c)	p(π ⁻) (MeV/c)	M(⁶ _A H) formation (MeV/c ²)	M(⁶ _A H) decay (MeV/c ²)	ΔΜ (⁶ _Δ Η) (MeV)
202.5±1.3	251.3±1.1	135.1±1.2	5802.33±0.96	5801.41±0.84	0.92±1.28
202.7±1.3	250.0±1.1	136.9±1.2	5803.45±0.96	5802.73±0.84	0.71±1.28
202.1±1.3	253.8±1.1	131.2±1.2	5799.97±0.96	5798.66±0.84	1.31±1.28

FINUDA Coll. and A. Gal, PRL 108 (2012) 042501 and NPA 881 (2012) 269

✓ B_Λ determination
 ✓ formation – decay mass difference

$B_{\Lambda}(^{6}_{\Lambda}H)$ determination

mass mean value = 5801.4 ± 1.1

```
B_{\Lambda} = 4.0 \pm 1.1 \text{ MeV} (^{5}\text{He} + \Lambda)
```

```
B_{\Lambda}= 5.8 MeV (<sup>5</sup>He + \Lambda)
\LambdaNN force: 1.4 MeV
```


formation – decay ΔM

Spin flip is forbidden in production at rest:

 K^-_{stop} + ⁶Li (L_i=0, S=1) \rightarrow ⁶ $_{\Lambda}H(L_f, S=1) + \pi^+$

 $\begin{array}{l} \mathsf{L}_{\mathsf{f}} = \mathbf{0} \rightarrow {}^{6}{}_{\Lambda}\mathsf{H}(\mathbf{1^{+}}_{\mathsf{exc.}}) \text{ followed by :} \\ (i) {}^{6}{}_{\Lambda}\mathsf{H}(1\!+\!\mathsf{exc.}) \rightarrow \gamma + {}^{6}{}_{\Lambda}\mathsf{H}(0\!+\!\mathsf{g.s.}) \left(\sim 10^{-13}\,\mathsf{s} \right) & \mathsf{M1} \text{ (p-wave, spin-flip)} \\ (ii) {}^{6}{}_{\Lambda}\mathsf{H}(0\!+\!\mathsf{g.s.}) \rightarrow \pi\!-\!+ {}^{6}\mathsf{He}(0\!+\!\mathsf{g.s.}) \left(\sim 10^{-10}\,\mathsf{s} \right) & \end{array}$

 \rightarrow B_{\wedge}(⁶_{\wedge}H) = (4.5 ± 1.2) MeV vs ⁵He+ \wedge from decay mass only little neutron-excess effect compared to B_{\wedge}(⁶_{\wedge}He) = (4.18 ± 0.10) MeV

Excitation energy of the 1⁺ spin-flip state from a systematic difference $\Delta M = 0.98 \pm 0.74$ MeV between values of ${}^{6}_{\Lambda}H$ mass derived separately from production and from decay.

${}^{9}_{\Lambda}$ He search with FINUDA

${}^{9}_{\Lambda}$ He search with FINUDA

$$\begin{array}{c} \mathsf{K}^{-}_{\mathsf{stop}} + {}^{9}\mathsf{Be} \rightarrow {}^{9}_{\Lambda}\mathsf{He} + \pi^{+} \\ {}^{9}_{\Lambda}\mathsf{He} \rightarrow {}^{9}\mathsf{Li} + \pi^{-} \\ (\pi ({}^{9}\mathsf{Li}) \sim 178 \text{ ms}) \end{array} \right] \quad \text{independent 2-body reactions:} \\ \begin{array}{c} \mathsf{decay \ at \ rest} \\ \mathsf{decay \ at \ rest} \end{array} \right]$$

 $M(K^{-}) + 5 M(n) + 4 M(p) - B(^{9}Be) = M(^{9}_{\Lambda}He) + T(^{9}_{\Lambda}He) + M(\pi^{+}) + T(\pi^{+})$

 $M(_{\Lambda}^{9}He) = 6 M(n) + 3M(p) - B(_{1}^{9}Li) + T(_{1}^{9}Li) + M(\pi^{-}) + T(\pi^{-})$

⁹_ΛHe/K⁻_{stop} production rate upper limit evaluation

- ✓ 0 observed events
- ✓ $\epsilon(\pi-)$, $\epsilon(\pi+)$ ✓ n. K⁻_{stop} on ⁹Be (2.5 10⁷ K⁻_{stop} events)

R * BR(π -) < (2.3±1.9)•10⁻⁶ / (n. K⁻_{stop} on ⁹Be) (90% C.L.)

$$BR({}^{9}_{\Lambda}He_{gs} \rightarrow {}^{9}Li_{gs} + \pi^{-}) = 0.261$$

from A. Gal, Nucl. Phys. A 828, 72 (2009)

 $R < 1.6 \ 10^{-5} / (n. K_{stop}^{-5} on {}^{9}Be) (90\% C.L.)$

PRC 86 (2012) 057301

Conclusions (K⁻_{stop}, π⁺) production rate vs A

Search for bound ${}^{6}_{\Lambda}H$

FINUDA momentum resolution

 π -production of ${}^{4}_{\Lambda}$ H hyperfragment on 6 Li

partial and cumulative spectra
 performance stability monitoring

INFN

 π + momentum resolution (235 MeV/c): K_{µ2} decay (PLB 698 (2011) 219)

⁶_AH binding energy

Dalitz et al., N. Cim. 30 (1963) 489 (binding energy 4.2 MeV)

Y. Akaishi et al., AIP Conf. Proc. 1011 (2008) 277 K.S. Myint, et al., Few Body Sys. Suppl. 12 (2000) 383 Y. Akaishi et al., Frascati Phys. Series XVI (1999) 16

"coherent" Λ - Σ coupling in O+ states $\rightarrow \Lambda NN$ three body force: $B_{\Lambda NN} = 1.4 \text{ MeV}, \Delta \dot{E}(0_{g.s.}^+ - 1^+) = 2.4 \text{ MeV}$ model originally developed for ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$

L. Majling, NPA 585 (1995) 211c

