Understanding the path length dependence of jet quenching in Heavy Ion Collisions from RHIC to LHC

Myungguen Song ${ }^{1}$ DongJo Kim ${ }^{2}$
${ }^{1}$ Yonsei University, South Korea
${ }^{2}$ University of Jyväskylä \& Helsinki Institute of Physics, Finland

June 23, 2015

Outline

(1) Physics motivation \& basic concept

- Nuclear modification factor $R_{A A}$
- Anisotropic particle distribtuon flow v_{2}
(2) Analysis
- Convert $R_{A A}$ as function of p_{T} and ϕ
- Estimating path-length
(3) Result
(4) Summary

$R_{A A}$ from RHIC to LHC

A schematic picture of the various scales involved in the modification of jets in dense matter.

- Energy loss mechanism of jet in QGP medium is predicited by number of theoritical models, but still some controversies for the path-length dependence of energy loSS. (T. Renk, PRC76, 064905, J. Auvinen et al, PRC82, 051901)
- Elastics energy loss scheme $\Delta E \propto L$ (dominated by collisional - recoil energy loss)
- Radiative energy loss scheme $\Delta E \propto L^{2}$ (medium induced gluon radiate LPM region)
- AdS/QCD energy loss scheme $\Delta E \propto L^{3}$ (strongly coupled)

High p_{T} flow and suppression of jet particles

Flow, anisotropic particle distribtuion in transverse angle

- low p_{T} : Hydrodynamic evolution of almond shape system
- high p_{T} : Jet quenching along to in(out) plane of induced medium

RHIC (Phys.Rev.C79.024901), $R_{A A}$ vs. reaction plane in the $20-30 \%$ centrality event at $p_{T}=6 \mathrm{GeV} / \mathrm{c}$. pQCD based models.

Combining $R_{A A}$ and Flow I

$$
\begin{aligned}
R_{A A}\left(p_{T}, \Delta \phi\right) & =\frac{\left(1 / N_{A A}^{\text {evt }}\right) d^{2} N^{A A} / d p_{T} d \Delta \phi}{\left\langle N_{\text {coll }}\right\rangle\left(1 / N_{p p}^{\text {evt }}\right) d N^{p p} / d p_{T}} \\
& =R_{A A}\left(p_{T}\right) \frac{d N^{A A}}{d \Delta \phi} \\
& =R_{A A}\left(p_{T}\right)\left(1+\sum_{n=1}\left(2 v_{n} \cos n\left(\phi-\psi_{n}\right)\right)\right. \\
& \sim R_{A A}\left(p_{T}\right)\left(1+2 v_{2} \cos 2 \Delta \phi\right)
\end{aligned}
$$

Combining $R_{A A}$ and Flow II

$R_{A A}$ can be expressed as a function of $6(\times 4) \Delta \phi$ bins as shown figure below(left)

Out-of-plane

$R_{A A}$ values for Centrality $10 \% \sim 20 \%, 5.0<p_{T}<5.5$

- $R_{\text {AA }}$ ALICE [Phys.Lett., B720, 52-62]
- v_{2} CMS[Eur. Phys. J. C (2012) 72:1945]
- The distribution is fitted with $N\left(1+2 v_{2} \cos (2 \Delta \phi)\right)$ and v 2 extracted from the fit (blue dotted lines) is consistent with the v2 results.

$R_{A A}$ as a function of emssision angle for various p_{T} bins

Estimating path-length : Convert $\Delta \phi$ to Path-length

- Case I : length from center to edge of boarder
- Case II : Average length from scattering point to edge of boarder

Glauber Model : Monte Calro approaches, which calculate "geometric" quantities to describe AA collisions.
The PHOBOS Glauber Monte Carlo - Alver, B. et al. arXiv:0805.4411

Path-length Case I: center to edge

- Assume that all particles produced at center of collision region. i.e. $(0,0)$ in figure
- then the path-length is from center to edge of the elliptical overlap zone of A-A collision
- Path-Length is radius of ellips

Path-length Case II: average length

- But, in realistic situation, if the collision happens, the scattering point and the direction of scattered parton is random
- in this case Path-length can be written as

$$
\begin{equation*}
L(\Delta \phi)=\frac{\sum_{n=1}^{N} \operatorname{Ln}(\Delta \phi)}{N} \tag{1}
\end{equation*}
$$

Results of $R_{A A}$ as function of path-length(with Case II)

Result with LHC data

- $R_{\text {AA }}$ starts to scale as a function of L for higher transverse momentum above $5 \mathrm{GeV} / \mathrm{c}$ which suggests that $R_{A A}$ does depend on the L regardless of the centrality
$\mathrm{L}_{\in}[\mathrm{fm}]$

Results of $R_{A A}$ as function of path-length(with Case II)

Result with RHIC data

- $R_{A A}$ starts to scale as a function of L for higher transverse momentum above $5 \mathrm{GeV} / \mathrm{c}$ which suggests that $R_{A A}$ does depend on the L regardless of the centrality

Understanding path-length dependence of $R_{A A}$

- The result was fitted by given function and fit gives very nice descreption of distribution of $R_{A A}(\mathrm{~L})$
- below $10 \mathrm{GeV} / \mathrm{c}, \mathrm{n}^{\prime}$ at RHIC is bigger than the one in LHC by 20%, some p_{T} dependence in RHIC
- above $10 \mathrm{GeV} / \mathrm{c}, \mathrm{n}$ ، around 2 both for RHIC and LHC

Summary

- Inclusive $R_{A A}$ and v_{2} have been measured with RHIC and LHC with good precision
- Energy loss mechanism of jet in QGP medium is predicited by number of theoritical models, but still some controversies for the path-length dependence of energy loss.
- We tried to attempt to express jet-quenching as function of path-length by utilizing meausred $R_{A A}$ and v_{2}
- Path-length are estimated with Glauber simulation as averaged length from scattering point to the edge of collision zone
- $R_{\text {AA }}$ starts to scale as a function of L for higher transverse momentum above $5 \mathrm{GeV} / \mathrm{c}$ which suggests that $R_{A A}$ does depend on the L regardless of the centrality
- Below $10 \mathrm{GeV} / \mathrm{c}$, the n ' at RHIC is bigger then the one in LHC and seems to be conversed around 2 from above $10 \mathrm{GeV} / \mathrm{c}$ both for RHIC and LHC

Back up

$R_{A A}$ from RHIC to LHC

Eur. Phys. J. C (2012) 72:1945

$$
\begin{equation*}
R_{A A}\left(p_{T}\right)=\frac{\left(1 / N_{A A}^{e v t}\right) d N^{A A} / d p_{T}}{\left\langle N_{c o l l}\right\rangle\left(1 / N_{p p}^{e v t}\right) d N^{p p} / d p_{T}} \tag{3}
\end{equation*}
$$

- From $R_{A A}$ one can approximately obtain the fraction of energy lost, $E_{\text {loss }}=\Delta p_{T} / p_{T}, \mathrm{via}$

$$
E_{\text {loss }} \sim 1-R_{A A}^{1 /(n-2)}
$$

where n is power laws in invariant spectra

- Suppression of high pT RAA can be related to path-length dependent energy loss
- Suppression of high p_{T} particles can be related with path-length using the centrality dependent $R_{A A}$ and the azimuthal angle determined by elliptic flow
- Many models were developed to explain the high p_{T} suppression as result of energy loss of Jet, but still challenging for models to explain $R_{A A}$ and flow simultaneously
- By combining $R_{A A}$ and flow, we can estimate the partonic energy loss as a function of path-length travsed by the parton in the medium

S.S. Adler et al. [PHENIX Collaboration]: Phys. Rev. C 76, 034904 (2007) 310, 316, 317

