Understanding the path length dependence of jet quenching in Heavy Ion Collisions from RHIC to LHC

Myungguen Song 1 $\,$ DongJo Kim 2

¹Yonsei University, South Korea

²University of Jyväskylä & Helsinki Institute of Physics, Finland

June 23, 2015

Outline

Physics motivation & basic concept

- Nuclear modification factor R_{AA}
- Anisotropic particle distribtuon flow v_2

🕨 Analysis

- Convert R_{AA} as function of p_T and ϕ
- Estimating path-length

3 Result

ELE NOR

R_{AA} from RHIC to LHC

A schematic picture of the various scales involved in the modification of jets in dense matter.

- Energy loss mechanism of jet in QGP medium is predicited by number of theoritical models, but still some controversies for the path-length dependence of energy loss. (T. Renk, PRC76, 064905, J. Auvinen et al, PRC82, 051901)
 - Elastics energy loss scheme $\Delta E \propto L$ (dominated by collisional recoil energy loss)
 - Radiative energy loss scheme $\Delta E \propto L^2$ (medium induced gluon radiate LPM region)
 - AdS/QCD energy loss scheme $\Delta E \propto L^3$ (strongly coupled) < = > <

High p_T flow and suppression of jet particles

Flow, anisotropic particle distribution in transverse angle

- low p_T : Hydrodynamic evolution of almond shape system
- high p_T : Jet quenching along to in(out) plane of induced medium

RHIC (Phys.Rev.C79.024901), R_{AA} vs. reaction plane in the 20-30% centrality event at $p_T=6~{\rm GeV/c.}$ pQCD based models.

Combining R_{AA} and Flow I

$$\begin{aligned} R_{AA}(p_T, \Delta \phi) &= \frac{(1/N_{AA}^{evt})d^2 N^{AA}/dp_T d\Delta \phi}{\langle N_{coll} \rangle (1/N_{pp}^{evt}) dN^{pp}/dp_T} \\ &= R_{AA}(p_T) \frac{dN^{AA}}{d\Delta \phi} \\ &= R_{AA}(p_T)(1 + \sum_{n=1} (2v_n \cos n(\phi - \psi_n))) \\ &\sim R_{AA}(p_T)(1 + 2v_2 \cos 2\Delta \phi) \end{aligned}$$

- higher order terms are neglected
- Above equation is verified with PHENIX data

(NN2015 @ Cantania, Italy)

Understanding the path length dependence of

ELE NOR

Combining R_{AA} and Flow II

 R_{AA} can be expressed as a function of 6 (x4) $\Delta \phi$ bins as shown figure below(left)

 R_{AA} values for Centrality 10% \sim 20%, 5.0 < p_T < 5.5

- R_{AA} ALICE [Phys.Lett., B720, 52 62]
- v₂ CMS[Eur. Phys. J. C (2012) 72:1945]
- The distribution is fitted with $N(1 + 2v_2 \cos(2\Delta\phi))$ and v2 extracted from the fit (blue dotted lines) is consistent with the v2 results.

R_{AA} as a function of emssision angle for various p_T bins

 $|\phi_{\text{badron}} - \psi_2|$ [rad]

(NN2015 @ Cantania, Italy)

Understanding the path length dependence of

-

Estimating path-length : Convert $\Delta \phi$ to Path-length

- Case I : length from center to edge of boarder
- Case II : Average length from scattering point to edge of boarder

Glauber Model : Monte Calro approaches, which calculate "geometric" quantities to describe AA collisions. The PHOBOS Glauber Monte Carlo - Alver, B. et al. arXiv:0805.4411

Path-length Case I : center to edge

- Assume that all particles produced at center of collision region. i.e. (0, 0) in figure
- then the path-length is from center to edge of the elliptical overlap zone of A-A collision
- Path-Length is radius of ellips

(NN2015 @ Cantania, Italy)

Understanding the path length dependence of

Path-length Case II: average length

- But, in realistic situation, if the collision happens, the scattering point and the direction of scattered parton is random
- in this case Path-length can be written as

Result

Results of R_{AA} as function of path-length(with Case II)

L_e [fm]

Result with LHC data

R_{AA} starts to scale as a function of L for higher transverse momentum above 5 GeV/c which suggests that *R_{AA}* does depend on the L regardless of the centrality Result

Results of R_{AA} as function of path-length(with Case II)

Result with RHIC data

R_{AA} starts to scale as a function of L for higher transverse momentum above 5 GeV/c which suggests that *R_{AA}* does depend on the L regardless of the centrality

ELE SQC

Result

Understanding path-length dependence of R_{AA}

- The result was fitted by given function and fit gives very nice descreption of distribution of R_{AA}(L)
- below 10GeV/c, n' at RHIC is bigger than the one in LHC by 20%, some p_T dependence in RHIC
- above 10GeV/c, n' around 2 both for RHIC and LHC

Summary

- Inclusive R_{AA} and v_2 have been measured with RHIC and LHC with good precision
 - Energy loss mechanism of jet in QGP medium is predicited by number of theoritical models, but still some controversies for the path-length dependence of energy loss.
- We tried to attempt to express jet-quenching as function of path-length by utilizing meausred R_{AA} and v_2
 - Path-length are estimated with Glauber simulation as averaged length from scattering point to the edge of collision zone
 - R_{AA} starts to scale as a function of L for higher transverse momentum above 5 GeV/c which suggests that R_{AA} does depend on the L regardless of the centrality
 - $\bullet\,$ Below 10GeV/c, the n' at RHIC is bigger then the one in LHC and seems to be conversed around 2 from above 10GeV/c both for RHIC and LHC

Back up

Understanding the path length dependence of

June 23, 2015 15 / 17

R_{AA} from RHIC to LHC

$$R_{AA}(p_T) = \frac{(1/N_{AA}^{evt})dN^{AA}/dp_T}{\langle N_{coll} \rangle (1/N_{pp}^{evt})dN^{pp}/dp_T}$$
(3)

• From R_{AA} one can approximately obtain the fraction of energy lost, $E_{loss} = \Delta p_T / p_T$, via

$$E_{loss} \sim 1 - R_{AA}^{1/(n-2)}$$

where n is power laws in invariant spectra

• Suppression of high pT RAA can be related to path-length dependent energy loss

(NN2015 @ Cantania, Italy)

Understanding the path length dependence of

- Suppression of high p_T particles can be related with path-length using the centrality dependent R_{AA} and the azimuthal angle determined by elliptic flow
- Many models were developed to explain the high p_T suppression as result of energy loss of Jet, but still challenging for models to explain R_{AA} and flow simultaneously
- By combining R_{AA} and flow, we can estimate the partonic energy loss as a function of path-length travsed by the parton in the medium

S.S. Adler et al. [PHENIX Collaboration]: Phys. Rev. C 76, 034904 (2007) 310, 316, 317

JIN NOR