
Understanding the path length dependence of jet
quenching in Heavy Ion Collisions from RHIC to LHC

Myungguen Song 1 DongJo Kim 2

1Yonsei University, South Korea
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Physics motivation & basic concept

RAA from RHIC to LHC

A schematic picture of the various scales involved
in the modification of jets in dense matter.

Energy loss mechanism of jet in QGP medium is predicited by number of
theoritical models, but still some controversies for the path-length
dependence of energy loss. (T. Renk, PRC76, 064905, J. Auvinen et al, PRC82, 051901)

Elastics energy loss scheme ∆E ∝ L (dominated by collisional - recoil energy loss)

Radiative energy loss scheme ∆E ∝ L2
(medium induced gluon radiate LPM region)

AdS/QCD energy loss scheme ∆E ∝ L3
(strongly coupled)
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Physics motivation & basic concept Anisotropic particle distribtuon flow v2

High pT flow and suppression of jet particles

Flow, anisotropic particle distribtuion in transverse angle

low pT : Hydrodynamic evolution of almond shape system

high pT : Jet quenching along to in(out) plane of induced medium
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RHIC (Phys.Rev.C79.024901), RAA vs. reaction plane in
the 20-30% centrality event at pT = 6 GeV/c. pQCD
based models.
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Analysis Convert RAA as function of pT and φ

Combining RAA and Flow I

RAA(pT ,∆φ) =
(1/Nevt

AA )d2NAA/dpT d∆φ

〈Ncoll 〉(1/Nevt
pp )dNpp/dpT

= RAA(pT )
dNAA

d∆φ

= RAA(pT )(1 +
∑
n=1

(2vn cos n(φ− ψn))

∼ RAA(pT )(1 + 2v2 cos 2∆φ)

higher order terms are
neglected

Above equation is verified
with PHENIX data
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Analysis Convert RAA as function of pT and φ

Combining RAA and Flow II

RAA can be expressed as a function of 6 (x4) ∆ φ bins as shown figure
below(left)
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RAA ALICE [Phys.Lett., B720, 52 - 62]

v2 CMS[Eur. Phys. J. C (2012) 72:1945]

The distribution is fitted with N(1 + 2v2 cos(2∆φ)) and v2 extracted from
the fit (blue dotted lines) is consistent with the v2 results.
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Analysis Convert RAA as function of pT and φ

RAA as a function of emssision angle for various pT bins
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Analysis Estimating path-length

Estimating path-length : Convert ∆φ to Path-length

Case I : length from center
to edge of boarder

Case II : Average length
from scattering point to
edge of boarder

Glauber Model : Monte Calro approaches, which
calculate ”geometric” quantities to describe AA

collisions.
The PHOBOS Glauber Monte Carlo - Alver, B. et

al. arXiv:0805.4411
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Analysis Estimating path-length

Path-length Case I : center to edge

Assume that all particles produced at center of collision region.
i.e. (0, 0) in figure

then the path-length is from center to edge of the elliptical overlap zone of
A-A collision

Path-Length is radius of ellips
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Analysis Estimating path-length

Path-length Case II: average length

But, in realistic situation, if the collision happens, the scattering point and
the direction of scattered parton is random

in this case Path-length can be written as

L(∆φ) =
ΣN

n=1Ln(∆φ)

N
(1)
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Result

Results of RAA as function of path-length(with Case II)
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Result with LHC data

RAA starts to scale as a function
of L for higher transverse
momentum above 5 GeV/c
which suggests that RAA does
depend on the L regardless of
the centrality
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Result

Results of RAA as function of path-length(with Case II)
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Result with RHIC data

RAA starts to scale as a
function of L for higher
transverse momentum
above 5 GeV/c which
suggests that RAA does
depend on the L
regardless of the
centrality
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Result

Understanding path-length dependence of RAA
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The result was fitted by given function and fit gives very nice descreption of
distribution of RAA(L)

below 10GeV/c, n‘ at RHIC is bigger than the one in LHC by 20%, some pT
dependence in RHIC

above 10GeV/c, n‘ around 2 both for RHIC and LHC
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Summary

Summary

Inclusive RAA and v2 have been measured with RHIC and LHC with
good precision

Energy loss mechanism of jet in QGP medium is predicited by number
of theoritical models, but still some controversies for the path-length
dependence of energy loss.

We tried to attempt to express jet-quenching as function of
path-length by utilizing meausred RAA and v2

Path-length are estimated with Glauber simulation as averaged length
from scattering point to the edge of collision zone
RAA starts to scale as a function of L for higher transverse momentum
above 5 GeV/c which suggests that RAA does depend on the L
regardless of the centrality
Below 10GeV/c, the n’ at RHIC is bigger then the one in LHC and
seems to be conversed around 2 from above 10GeV/c both for RHIC
and LHC
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RAA from RHIC to LHC

Eur. Phys. J. C (2012) 72:1945

RAA(pT ) =
(1/Nevt

AA )dNAA/dpT
〈Ncoll〉(1/Nevt

pp )dNpp/dpT
(3)

From RAA one can
approximately obtain the
fraction of energy lost,
Eloss = ∆pT/pT , via

Eloss ∼ 1− R
1/(n−2)
AA

where n is power laws in
invariant spectra

Suppression of high pT RAA
can be related to path-length
dependent energy loss
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Suppression of high pT particles can be related with path-length using
the centrality dependent RAA and the azimuthal angle determined by
elliptic flow

Many models were developed to explain the high pT suppression as
result of energy loss of Jet, but still challenging for models to explain
RAA and flow simultaneously

By combining RAA and flow, we can estimate the partonic energy loss
as a function of path-length travsed by the parton in the medium

S.S. Adler et al. [PHENIX Collaboration]: Phys. Rev. C 76, 034904 (2007) 310, 316, 317
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