Open heavy-flavour measurements with ALICE at the LHC

Nicole Bastid for the ALICE Collaboration LPC Clermont-Ferrand, IN2P3-CNRS, UBP, France (Nicole.Bastid@clermont.in2p3.fr)

Physics motivations

□ Open heavy-flavour measurements with ALICE

□ Selection of results in p-Pb and Pb-Pb collisions

- Nuclear modification factor
- Elliptic flow
- Azimuthal correlations
- Model comparisons

□ Conclusion

Relevance of open heavy flavours in heavy-ion collisions at the LHC

duark

z

Pre-Equilibrium

Phase ($< \tau_0$)

□ Charm and beauty quarks produced in initial hard scatterings with a short formation time $\tau_f \sim 1/2m_{c/b} \sim 0.02-0.1 \text{ fm/}c < \tau_0 << \tau_{QGP} \sim 5-10 \text{ fm/}c$

 $\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\omega} = 1 + \sum 2v_n \cos[n(\varphi - \Psi_n)]$

- □ Flavour conserved by the strong interaction
- □ Experience the full collision history
 - Sensitive probes of the medium properties

Open heavy flavours in Pb-Pb collisions probe

- In-medium parton energy loss
 - Color-charge and quark-mass dependence Dokshitzer & Kharzeev, PLB 519 (2001) 199
 - Expected: $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$ $\longrightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$?

□ Heavy quark participation in the collective expansion

Observables

Nuclear modification factor:

Elliptic flow, v_2 :

$$R_{\rm AA}(p_{\rm T}) = 1/\langle T_{\rm AA} \rangle \times \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

with
$$v_2 = < \cos[2(\varphi - \Psi_n)] >$$

c quark

Relevance of open heavy flavours in pp and p-Pb collisions

A meaningful interpretation of Pb-Pb data needs data from:

- p-Pb collisions
- Control experiment for Pb-Pb collisions
- Cold nuclear matter effects
 - Nuclear modification of Parton Distribution Functions (PDF): shadowing or gluon saturation
 - Energy loss
 - $k_{\rm T}$ broadening, multiple-soft interactions
 - Possible final-state effects

pp collisions

- Reference for Pb-Pb and p-Pb collisions
- □ Test of perturbative QCD calculations
- □ Insights into production mechanisms

- K. J. Eskola et al., JHEP 0904 (2009) 65
- D.E. Kharzeev et al., arXiv:1205.1554
- F. Dominguez et al., arXiv:1109.1250
- R. Vogt, Phys. Rev C81 (2010) 044903
- F. Arleo et al., arXiv:1204.4609
- C. Lourenco et al., JHEP 0902 (2009) 014

Open heavy flavours with the ALICE central barrel

Open heavy flavours with the ALICE muon spectrometer

Open heavy-flavour results in Pb-Pb collisions

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x00000000D3BBE693

D mesons: R_{AA} vs p_{T}

- □ Strong suppression of D-meson yield at high p_T in central Pb-Pb collisions relative to the binary scaled pp reference: a factor 3-5 for $p_T > 5$ GeV/*c*
- □ Similar suppression for D_{s}^{+} as for other D mesons in 8 < p_{T} < 12 GeV/*c*
- □ More statistics needed at intermediate p_T to conclude about a possible D_s^+ enhancement due to recombination or coalescence

Kuznetsova, Rafelski, EPJ C 51 (2007) 113; He et al., PRL 110 (2013) 112301; Andronic et al., PLB 659 (2008) 149

D-meson R_{AA} vs centrality: comparison with charged pions

- D-meson and π[±] suppression increases with increasing centrality
- Similar suppression for D mesons and charged pions: $R_{AA}(D) \approx R_{AA}(\pi^{\pm})$
- In agreement with models taking into account $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c}$ but also:
 - Different shapes of parton p_{T} distributions
 - Different fragmentation functions

Djordjevic, PLB 734 (2014) 286; Wicks, Horowitz, Djordjevic, NPA 872 (2011) 265

D-meson R_{AA} vs centrality: comparison with beauty

- □ Non-prompt J/ ψ (i.e. from B decays) measured by CMS less suppressed than D mesons in central collisions: consistent with the expectation $\Delta E_c > \Delta E_b$ (dead cone effect, *PLB 519 (2001) 199*)
 - Similar $\langle p_T \rangle \sim 10 \text{ GeV}/c$ for D and B mesons and slightly different *y* range
- Measurements in agreement with pQCD calculations including mass-dependent radiative and collisional energy loss
- Similar trends for other calculations (TAMU, BAMPS, WHDG, MC@sHQ+EPOS2, Vitev et al.)

Heavy-flavour decay leptons: R_{AA} vs p_{T}

 \Box Similar suppression of $\mu \leftarrow c$, b yields at forward rapidity and $e \leftarrow c$, b yields at mid-rapidity in the 0-10% centrality class: a factor 3-4 in 4 < p_T < 10 GeV/cHint for a suppression of $e \leftarrow b$ yields:

 $R_{AA} < 1$ for $p_T > 3$ GeV/c

Azimuthal anisotropy: D-meson v_2 vs p_T

Initial spatial anisotropy \rightarrow momentum anisotropy of heavy-flavour hadrons if enough scattering of heavy quarks in the medium

 \Box v_2 sensitive to:

- Low p_T: collective motion
- High p_T: path-length dependence of parton energy loss

$$\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2\nu_n \cos[n(\varphi - \Psi_n)]$$

- **D** Positive v_2 of D mesons observed: a 5.7 σ effect for 2 < p_T < 6 GeV/c
- Similar v₂ for charged particles and D mesons
- □ Confirmation of significant interaction of charm quarks with the medium \rightarrow collective motion of low p_{T} charm
 - quarks in the expanding fireball

Heavy-flavour decay leptons: v_2 vs p_T and centrality

ALI-PREL-77628

- \square $\mu \leftarrow c$, b measured at forward rapidity in 2.5 < y < 4 exhibit a positive v_2 :
 - a 3 σ effect for 3 < p_T < 5 GeV/*c* in 20-40% centrality class
- □ Increasing v_2 of $\mu \leftarrow c$, b from central to semi-central collisions
- □ Consistent results with $e \leftarrow c$, b measured at mid-rapidity in |y| < 0.7
- Confirmation of significant interaction of heavy quarks with the medium

Model comparisons: D-meson R_{AA} and v_2

PRC 90 (2014) 034904

WHDG: Nucl. Phys. A 872 (2011) 265; Cao, Qin, Bass: Phys. ReV. C 88 (2013) 044907;
POWLANG: Eur. Phys. J. C 71 (2011) 1666, J. Phys. G 38 (2011) 124144;
BAMPS: Phys. Lett. B 717 (2012) 430; TAMU elastic: arXiv: 1401.3817;
MC @ sHQ+EPOS, Coll + Rad (LPM): Phys. Rev. C 89 (2014) 014905; UrQMD: arXiv:1211.6912

- □ Simultaneous description of D-meson R_{AA} and v_2 is challenging and provides constraints on energy loss models
- □ Similar picture for heavy-flavour decay leptons

Open heavy-flavour results in p-Pb collisions

- □ p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
 - ✓ Rapidity shift: $|\Delta y| = 0.465$ in the p-beam direction (positive y)
 - \checkmark Two configurations:
 - p-Pb , muon spectrometer in p-going direction
 - Pb-p, muon spectrometer in Pb-going direction

D mesons: R_{pPb} vs p_T

$$R_{\rm pPb}(p_{\rm T}) = 1/A \times \frac{{\rm d}N_{\rm pPb}/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}/{\rm d}p_{\rm T}}$$

ALICE: arXiv:1405.3452 CGC: H.Fujii and K. Watanable, arXiv: 1308.1258 pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09: K. J. Eskola et al., JHEP 04 (2009) 065 Vitev: Phys. Rev. C 80461 (2009) 054901

ALI-PUB-79415

□ Nuclear modification factor (R_{pPb}) consistent with unity in the region p_T > 2 GeV/*c*

- **D**-meson R_{pPb} in agreement with:
 - Perturbative QCD calculations including EPS09 parameterization of shadowing
 - Color Glass Condensate (CDG) predictions
 - Model including energy loss, shadowing and $k_{\rm T}$ broadening
- > Cold nuclear matter effects are small at high p_{T}

Heavy-flavour decay electrons: R_{pPb} vs p_T

e ← c, b

e ← b

- R_{pPb} consistent with unity within uncertainties for electrons from heavy-flavour hadron decays and beauty-hadron decays
- R_{pPb} in agreement with perturbative QCD calculations including EPS09 parameterization of shadowing

FONLL: M. Cacciari et al., JHEP 007 (1998) 9805, JHEP 006 (2001) 0103 pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09: K. J. Eskola et al., JHEP 04 (2009) 065

Heavy-flavour decay muons: R_{pPb} vs p_T

- $\square R_{pPb} \text{ at forward rapidity is consistent with unity and, at backward rapidity is slightly larger than unity in 2 < <math>p_T$ < 4 GeV/*c* and close to unity at higher p_T
- □ Cold nuclear matter effects are small
- R_{pPb} described by perturbative QCD calculations implementing cold nuclear matter effects

pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09: K. J. Eskola et al., JHEP 04 (2009) 065 R. Sharma et al., Phys. Rev. C 80 (2009) 054902; Z.B. Kang et al., Phys. Lett. B 740 (2015) 23

D mesons

- □ The strong suppression measured at high p_T in central Pb-Pb collisions is due to final-state effects
- \Box Same conclusion also for $e \leftarrow c$, b and $e \leftarrow b$

Heavy-flavour decay electron-hadron azimuthal correlations

- Trigger particle: electron from heavy-flavour hadron decay
- □ Associated particle: charged hadron
- Jet contribution removed by subtracting angular correlations in highest multiplicity (0-20%) and lowest multiplicity (60-100%) p-Pb event class

ALI-PREL-62026

Double-ridge structure observed in high-multiplicity p-Pb collisions after subtraction of the baseline, as in the light-flavour sector *Phys. Lett. B* 719 (2013) 29, *Phys. Lett. B* 726 (2013) 164
 Initial-state effects (CGC) or collective flow? *CGC: Dusling, Venugopalan, Phys. Rev. D* 87 (2013) 094034 *Hydrodynamics in final state: Bozek, Broniowski, Phys. Lett. B* 718 (2013) 1557

Conclusion

Pb-Pb collisions:

- □ Strong interaction of heavy quarks with the medium
 - Suppression of open heavy-flavour yields at high p_{T} in central collisions
 - Participation of heavy quarks (charm, mainly) in the collective expansion of the system
- □ Larger suppression for D mesons than for B mesons at $p_{\rm T}$ ~ 10 GeV/*c*
- □ Simultaneous description of different observables (*R*_{AA}, *v*₂) provides constraints on energy loss models

p-Pb collisions:

- □ Cold nuclear matter effects are small
 - The measured suppression of open heavy-flavour yields at high p_T in central Pb-Pb collisions is a medium effect related to in-medium parton energy loss

More precise measurements to come soon with the LHC run 2

Heavy quarks in Pb-Pb: azimuthal anisotropy

Initial spatial anisotropy \rightarrow momentum anisotropy of heavy-flavour hadrons if enough scattering of heavy quarks in the medium

Reaction Plane Study azimuthal distributions w.r.t. the reaction plane

$$\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_n)]$$

elliptic flow:
$$v_2 = \langle \cos[2(\varphi - \Psi_n)] \rangle$$

Heavy-flavour v_2 measurements probe:

- □ Low/intermediate p_T : collective motion, thermalization of heavy quarks and hadronization mechanism (recombination)
 - due to their large mass, heavy quarks should feel less the collective expansion
- □ High p_{T} : path-length dependence of heavy quark energy loss
 - linear for collisional processes
 - close to quadratic for radiative processes

D mesons: v_2 vs p_T

D Positive v_2 observed: a 5.7 σ effect for 2 < p_T < 6 GeV/*c* in 30-50% centrality

- \Box Hint for an increase of v_2 from central to semi-central collisions
- \Box D-meson v_2 similar to charged-particle v_2

□ Confirmation of significant interaction of charm quarks with the medium \rightarrow collective motion of low p_T charm quarks in the expanding fireball

Electrons from heavy-flavour decays: v_2 vs p_T

$$v_2 = \frac{(1+R_{\rm SB})v_2^{\rm incl\,e} - v_2^{\rm bkg\,e}}{R_{\rm SB}}$$

 $V_2^{\text{incl e}}$: event-plane method $V_2^{\text{bkg e}}$: invariant mass, cocktail based on data R_{SB} : signal to background ratio

□ Positive v_2 observed: a 3 σ effect for 2 < p_T < 3 GeV/*c* in 20-40% centrality class with similar centrality dependence as observed for D mesons

□ Confirmation of significant interaction of heavy quarks with the medium → collective motion of low p_T heavy quarks (mainly charm) in the expanding fireball

D-meson R_{AA} vs p_{T} : comparison with pions

□ D-meson and $\pi^{\pm} R_{AA}$ as a function of p_{T} compatible within uncertainties □ In agreement with models taking into account $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$ but also:

- different shapes of the parton $p_{\rm T}$ distributions
- different fragmentation functions
 Djordjevic, PLB 734 (2014) 286; Wicks, Horowitz, Djordjevic, Nucl. Phys. A 872 (2011) 265
- soft production mechanism for low p_T charged pions

Model comparisons: heavy-flavour lepton $R_{AA} \& v_{2}$

Similar picture from the comparison of R_{AA} and v_2 to models as for D mesons Simultaneous measurement of R_{AA} and v_2 allows one to constrain models

BAMPS: PLB 717 (2012) 430, arXiv:1401.3817; POWLANG: Eur. Phys. J. C 71 (2011) 1666, J. Phys. G 38 (2011) 124144; TAMU elastic: arXiv:1401.3817; MC@ sHQ+EPOS, Coll + Rad(LPM): PRC 89 (2014) 014905

Heavy-flavour decay electron-hadron azimuthal correlations in Pb-Pb

Near side: modifications of the properties of jets containing heavy flavours

Away side: path-length dependence of in-medium energy loss

 \Box Observable: I_{AA}

Measured I_{AA} compatible with unity: difficult to conclude on possible medium-induced modification of fragmentation due to limited statistics

Near Side

Data samples: Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

ALICE

Observable	Integrated luminosity
D mesons	2010: 2.12 μb ⁻¹ (0-80%) 2011: 23 μb ⁻¹ (0-10%), 6.2 μb ⁻¹ (10-30%), 6.2 μb ⁻¹ (30-50%)
$e^{\pm} \leftarrow c, b$	2010: 2.0 μb ⁻¹ (0-80%) 2011: 22 (37) μb ⁻¹ in 0-10% and 6 (34) μb ⁻¹ in 20-40% with MB (EMCAL) triggers
$\mu^{\pm} \leftarrow c, b$	2010: 2.7 μb ⁻¹ (0-80%) 2011: 11.3 μb ⁻¹ (0-10%) and 3.5 μb ⁻¹ in 10-40%

The LHC: a heavy-flavour factory

Abundant heavy-flavour production rates at the LHC, have been measured in pp collisions

- $\sigma_c(LHC) = \sigma_c(RHIC) \times 10$
- $\sigma_{b}(LHC) = \sigma_{b}(RHIC) \times 50$
- Central (5%) Pb-Pb (LHC, 2.76TeV) : ~60 cc & ~2 bb (MNR code: Nucl. Phys. B 373 (1992) 295; EKS98, EPS08: EPJ C9 (1999) 61, JHEP07 (2008) 102)

Differential cross sections in pp, $\sqrt{s} = 2.76$ TeV

Good agreement within uncertainties with pQCD calculations

Particle IDentification (PID) in ALICE

33

p [GeV/c]

ALI-PERF-8792