Hadronization by coalescence plus fragmentation from RHIC to LHC

Vincenzo Minissale
University of Catania - INFN LNS

Nucleus Nucleus 2015, 22 June 2015

Vincenzo Greco
Francesco Scardina
arXiv:1502.06213
Outline

• Hadronization:
 – Coalescence
 – Fragmentation

• Coalescence model and Parameters

• Comparison with data
 – RHIC Au+Au $\sqrt{s} = 200 \text{ GeV}$
 – LHC Pb+Pb $\sqrt{s} = 2.76 \text{ TeV}$

• Elliptic Flow
Ultrarelativistic heavy-ion collisions

HIC sequence

Initial Stage

Pre-equilibrium stage

Expansion

QGP

Hadronization

Chemical and kinetic freeze-out

freeze out
hadrons
 gluons & quarks in eq.
gluons & quarks out of eq.
strong fields
 incoming nuclei
Ultrarelativistic heavy-ion collisions

HIC sequence

Initial Stage

Pre-equilibrium stage

Expansion

QGP

Hadronization

Chemical and kinetic freeze-out

freeze out

hadrons

 gluons & quarks in eq.

 gluons & quarks out of eq.

strong fields

incoming nuclei
• Fragmentation

\[
\frac{dN_h}{d^2 p_h} = \sum_f \int dz \frac{dN_f}{d^2 p_f} D_{f \to h}(z)
\]

\[0 < z < 1\]

• **Fragmentation**

\[
\frac{dN_h}{d^2 p_h} = \sum_f \int dz \frac{dN_f}{d^2 p_f} D_{f \rightarrow h}(z) \\
0 < z < 1
\]

• **Coalescence**

Hadronization

- **Fragmentation**

\[
\frac{dN_h}{d^2 p_h} = \sum_f \int dz \frac{dN_f}{d^2 p_f} D_{f \rightarrow h}(z)
\]

- **Coalescence**

\[
\frac{dN_H}{d^2 p_T} = g_H \int \prod_{i=1}^n \left(p_i d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) f_H(x_1...x_n, p_1...p_n) \delta(p_T - \Sigma p_{iT}) \right)
\]
Hadronization

- **Fragmentation**
 \[
 \frac{dN_h}{d^2 p_h} = \sum_f \int d\vec{z} \frac{dN_f}{d^2 p_f} D_{f \rightarrow h}(z)
 \]
 \[0 < z < 1\]

- **Coalescence**

\[
\frac{dN_H}{d^2 p_T} = g_H \int \prod_{i=1}^{n} \left(\frac{dN}{d^3 p_i} \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) \right) f_H(x_1 \ldots x_n, p_1 \ldots p_n) \delta(p_T - \Sigma p_{iT})
\]

- **Parton Distribution Function**

- **Statistical factor colour-spin-isospin**

- **Hadron Wigner Function**

- **Fragmentation Function**

\[
f_M = \frac{9\pi}{2} \Theta(\Delta_x^2 - (x_1 - x_2)^2) \Theta(\Delta_y^2 - (p_1 - p_2)^2 + (m_1 - m_2)^2)
\]

\[\Delta_x = 1/\Delta_p \quad \text{free parameter}\]
RHIC Observables

Proton to pion ratio
Enhancement

In the vacuum, from fragmentation functions the ratio is

\[
\frac{D_{c \to p}(z)}{D_{c \to \pi}(z)} < 0.25
\]

Elliptic Flow Splitting
RHIC Observables

Proton to pion ratio Enhancement

In the vacuum, from fragmentation functions the ratio is

\[\frac{D_{c \rightarrow p}(z)}{D_{c \rightarrow \pi}(z)} < 0.25 \]

Elliptic Flow Splitting
Coalescence code

• Consider i particles
• Give a probability $P(i)$ from the partonic distribution
• Compute the coalescence integral

$$\frac{dN_M}{d^2p_T} = g_M \sum_{i,j} P_q(i)P_{\bar{q}}(j)\delta^{(2)}(p_T - p_{iT} - p_{jT})f_M(x_i, x_j; p_i, p_j)$$
Fireball parameters

- Central collision (0–10%)
- Temperature \(T = 160 \text{ MeV} \)
- Collective flow \(\beta_T = \beta_{\text{max}} \frac{r}{R} \)

\[\beta_{\text{max}} \text{ from radial expansion } R = R_0 + \beta_{\text{max}} a x \tau \]
- Uniform in \((x, y)\); \(z = \tau \sinh y \)
- \(V = \pi r_T^2 \tau \)
- Fireball radius+radial flow constraints \(\frac{dN_{\text{ch}}}{dy} ; \frac{dE_T}{dy} \)
Fireball parameters

- Central collision (0–10%)
- Temperature $T = 160 \text{ MeV}$
- Collective flow $\beta_T = \beta_{\text{max}} \frac{r}{R}$
 - β_{max} from radial expansion $R = R_0 + \beta_{\text{max}} ax \tau$
- Uniform in $(x, y); \ z = \tau \sinh y$
- $V = \pi r_T^2 \tau$
- Fireball radius+radial flow constraints $\frac{dN_{ch}}{dy}; \frac{dE_T}{dy}$

Typical QGP lifetime
- RHIC = 4.5 fm/c
- LHC = 7.8 fm/c
Fireball parameters

- Central collision (0–10%)
- Temperature $T = 160$ MeV
- Collective flow $\beta_T = \beta_{\text{max}} \frac{r}{R}$

 β_{max} from radial expansion $R = R_0 + \beta_{\text{max}} ax \tau$

- Uniform in (x, y); $z = \tau \sinh y$

- $V = \pi r_T^2 \tau \sim 1000 \text{ fm}^3 \text{ RHIC} \sim 2500 \text{ fm}^3 \text{ LHC}$

- Fireball radius+radial flow constraints $\frac{dN_{\text{ch}}}{dy}$; $\frac{dE_T}{dy}$

 $R_T = 8.7 \text{ fm at RHIC}$ \quad $\beta_{\text{max}} = 0.37 \text{ at RHIC}$

 $R_T = 10.2 \text{ fm at LHC}$ \quad $\beta_{\text{max}} = 0.63 \text{ at LHC}$

Typical QGP lifetime

RHIC = 4.5 fm/c
LHC = 7.8 fm/c
Parton Distribution

- Thermal Distribution ($< 2 \text{ GeV}$)

\[
\frac{dN_{q,\bar{q}}}{d^2 r_T d^2 p_T} = \frac{g_{q,\bar{q}} \pi m_T}{(2\pi)^3} \exp \left(-\frac{\gamma_T (m_T - p_T \cdot \beta_T \mp \mu_q)}{T} \right)
\]

- Minijet Distribution ($> 2 \text{ GeV}$)

\[
\frac{dN_{\text{jet}}}{d^2 p_T} = A \left(\frac{B}{B + p_T} \right)^n \quad \text{RHIC}
\]

\[
\frac{dN_{\text{jet}}}{d^2 p_T} = \left[1 + \left(\frac{p_T}{A_2} \right)^2 \right]^{A_3} + \left[1 + \left(\frac{p_T}{A_5} \right)^2 \right]^{A_6} \quad \text{LHC}
\]
Resonance Decay

- \(\pi (I = 1, J = 0) \)
 \[k^* (I = 1, J = 1/2) \rightarrow k\pi \]
 \[\rho (I = 1, J = 1) \rightarrow \pi\pi \]
 \[\Delta (I = 3/2, J = 3/2) \rightarrow N\pi \]

- \(p (I = 1/2, J = 1/2) \)
 \[\Delta (I = 3/2, J = 3/2) \rightarrow N\pi \]

- \(k^\pm (I = 0, J = 1/2) \)
 \[k^* (I = 1, J = 1/2) \rightarrow k\pi \]

- \(\Lambda (1116) (I = 0, J = 1/2) \)
 \[\Sigma^0 (1193) (I = 1, J = 1/2) \rightarrow \Lambda\gamma \]
 \[\Lambda (1405) (I = 0, J = 1/2) \rightarrow \Sigma\pi \]
 \[\Sigma^0 (1385) (I = 1, J = 3/2) \rightarrow \Lambda\pi \quad \text{with B.R.} = 88\% \]
 \[\rightarrow \Sigma\pi \quad \text{with B.R.} = 11,7\% \]

\[\text{Suppression factor} \quad \left(\frac{m_{H^*}}{m_H} \right)^{3/2} e^{-\frac{E_{H^*} - E_H}{T}} \]
Results RHIC
RHIC – Pion
RHIC – Antiproton
RHIC – Kaon & Lambda
RHIC – Ratios
Results LHC
LHC – Pion
LHC – Proton
LHC - Kaon & Lambda

- $d^3N/dp_T^2d\eta$ for K data, Kcoal.+frag., Kcoal. total, and fragmentation AKK.

- $d^3N/dp_T^2d\eta$ for ALICE data, Λcoal.+frag., Λcoal. total, and fragmentation AKK.
LHC – Ratios

- Height and p_T position of the peak well described.
- Lack of fragmentation at $p_T \approx 6$ GeV (seen also in pp with AKK)
- Soft-minijet coalescence contribution around and above the peak (similar to EPOS)
- Only coalescence would give higher peak shifted in p_T
- Without radial flow … (→ pp collisions but not exactly)
RHIC Observables

Elliptic Flow splitting
Elliptic Flow

- Fourier expansion of the azimuthal distribution

\[f(\varphi, p_T) = 1 + 2 \sum_{n=1}^{\infty} v_n(p_T) \cos n\varphi \]

momentum anisotropy in the transverse plane

coalesscence brings to

- Partonic elliptic flow
- Hadronic elliptic flow

\[v_{2,M}(p_T) \approx 2v_{2,q}(p_T/2) \]
\[v_{2,B}(p_T) \approx 3v_{2,q}(p_T/3) \]
Elliptic Flow

- Fourier expansion of the azimuthal distribution

\[f(\varphi, p_T) = 1 + 2 \sum_{n=1}^{\infty} v_n(p_T) \cos n\varphi \]

momentum anisotropy in the transverse plane

- Elliptic flow coalescence brings the

\[v_{2,M}(p_T) \approx 2v_{2,q}(p_T/2) \]

\[v_{2,B}(p_T) \approx 3v_{2,q}(p_T/3) \]
Preliminary on radial flow impact

Same approach, but with an anisotropic radial flow in the quark distrib. function

$$\frac{dN}{d^2 r_T d^2 p_T} = \frac{g \tau m_T}{(2\pi)^3} \exp\left(- \frac{\gamma_T (m_T - p_T \cdot \beta_T)}{T} \right)$$

$$\beta_T(r, \phi) = \beta_0(r) + \beta_2(r) \cos(2\phi)$$

About 20% quark number scaling breaking:
- 3D
- finite width wave function
- anisotropic radial flow
Summary

- Good agreement with RHIC & LHC data
 - π, p, k, Λ spectra
 - ratio peak shift at LHC with no parameters change
- v_2 QNS breaking

Outlooks

- other particles (ϕ, Ξ, Ω)
- other centrality
- Next order in v_n and effect of radial flow on the Quark Number Scaling
Backup slides
Elliptic Flow and v_3

- Fourier expansion of the azimuthal distribution

$$f(\phi, p_T) = 1 + 2 \sum_{n=1}^{\infty} v_n(p_T) \cos n\phi$$

momentum anisotropy in the transverse plane

Fluctuations \rightarrow $n=3$
Next order: $v_3 - \text{LHC}$
* What's the approach working in the range $p_T \approx 2-10$ GeV?
* Is the coalescence necessary?

EPOS = (half)-viscous-hydro + soft-jet recombination

- p/π ?
- ν_2 of Λ and K ?
- Also p_T spectra check
We do not have the fragm. function for ϕ.

It is clear that coalescence predict a similar slope for ϕ and p.

Soft part same slope ϕ and p

Missing fragmentation

Contribution usually half of the yield at $p_T \approx 4$ GeV
In case of a partonic thermal distribution

\[f_{th} \approx Ae^{-p/T} \]

for a two-quark hadron,

\[e^{-p_1/T} e^{-p_2/T} \Rightarrow e^{-xP/T} e^{-(1-x)P/T} = e^{-P/T} \]

in the \(n \) quark case

\[\prod_{n} e^{-p_n/T} \rightarrow e^{-n \frac{P}{nT}} \propto e^{-\frac{P}{T}} \]

Baryon/Meson Ratio = 1