

Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

Silvia Leoni

Università degli Studi di Milano e INFN sez. Milano

OUTLINE

INTRODUCTION

Models aimed at describing Excited States in Nuclei SHELL Model and Particle-Phonon Coupling Model

 \rightarrow Limitation and Future Perspectives for Unified Picture

SURVEY of RECENT γ – *spectroscopy* RESULTS around DOUBLY MAGIC NUCLEI

- 1. ⁴⁸Ca Multinucleon Transfer
- 2. ¹³²Sn Neutron Induced Fission
- 3. ${}^{208}Pb (n, \gamma)$

Challenges in MODERN NUCLEAR PHYSICS

Quest for a UNIFIED DESCRIPTION of ALL Nuclei

A.Schwenk, ...

Configuration Space

 $\binom{K}{A} = \frac{K!}{(K-A)!A!}$

Number of ways to distribute A nucleons over K orbitals

MICROSCOPIC Structure of Nuclei: a computational challenge ...

SHELL MODEL CALCULATIONS

 \rightarrow CORE Excitations may be very complex and not doable with SHELL MODEL

Relevance of CORE Excitations

Low lying excited states in **DOUBLY MAGIC** Nuclei are dominted by complex, collective excitations

2⁺, 3⁻, 4⁺, ... PHONONS

The Structure of Nuclei with **one** or **two valence particles** is influenced by

Particle-PHONON couplings

Key Ingredient for:

- Quenching of Spectroscopic Factors,
- Anharmonicity of vibrational spectra
- Damping of Giant Resonances, ...

PHENOMENOLOGICAL (Bohr-Mottelson) MICROSCOPIC (Colò, Bortignon, Sagawa, Dabaczewski, Vretenar, ...)

→ VERY limited EXPERIMENTAL Information on Particle-PHONON Couplings around DOUBLY MAGIC NUCLEI

Interplay between collective and single-particle excitations

Krakow group: R. Broda, B. Fornal et al., ...

Ca

Ca

Studies of Moderately N-Rich Nuclei

Multi Nucl er with THIN targets: Ge Array coupled to Magnetic Spectrometer

γ **spectra**

5°Ca

49**Ca**

48**Ca**

47**Ca**

3000

E [keV]

1500

Similar Studies with AGATA-PRISMA (LNL) and EXOGAM/AGATA-VAMOS (GANIL)

Spectroscopy of 49Ca: Spin, Parity and Lifetimes

D. Montanari, S. Leoni et al., PLB697 (2011) 288

Interpretation of 9/2+ state of 49Ca

Lesson Learned from 49Ca

1. EXPERIMENT identifies a particle-phonon state 9/2+: a member of $3^{-} \otimes p_{3/2}$

2. PHENOMENOLOGICAL Particle-Phonon Model reproduces the 9/2+ state

3. LARGE SCALE SHELL Model calculations are doable (with space truncation):

rather good agreement has been reached, but **single particle component** too strong

Interplay between collective and single-particle excitations

The γ-Spectroscopy Campaign @ ILL-reactor (Grenoble) 2012-2013: 2 Reactor Cycles (100 days, 95% DATA Taking)

First time a *large HPGe array* (52 Ge crystals) installed around a *highly collimated cold-neutron beam*

The ACQUISITION SYSTEM A Fully Digital Approach, TRIGGERLESS

>10 kHz/crystal, **>600 kHz total, 10 ns clock** Unique opportunity for γ-coincidences over several μs time window

 \rightarrow *n-induced fission* on ²³⁵U and ²⁴¹Pu and (*n*, γ) on several targets

G. DeFrance, A. Blanc, U. Koster, M. Jentschel, P. Mutti, G. Simpson, J.M. Regis, C. Ur et al.

FIG. 5. Partial level scheme of ¹³³Sb as obtained in the present work. Excited levels and γ transitions are labeled with energies given in keV.

Isomer Decay Measured at the focal plane of LOHENGRIN separator (ILL)

W. Urban et al., PRC79(2009)037304

Prompt-Delayed Coincidences over μs time range

Feeding of the ISOMER

Spins up to 25/2+

G. Bocchi – PhD Thesis, Milano

INTERPRETATION

Multiplet of states 11/2⁺, 13/2⁺, ... 25/2⁺

Lifetimes Analysis with Scintillators

	$ au_{EXP}$	B(M1,I→I-1)	
15/2+	≈10 ps	0.7 W.u. 🦷	> 100
13/2+	≈4o ps	0.005 W.u. 🖌	> 100

Not Simple Configurations !

Interpretation of ¹³³Sb DATA?

For systems with A ≈ 100

LARGE SHELL Model Calculations Involving complex CORE-excitations are NOT possible !

→ 3p - 3h excitations take weeks with 10⁶ processors
→ More Complex Configurations are impossible

A New Approach

HYBRID Model:

Extended Microscopic Particle-Vibration Coupling Model

G. Colò, P.F. Bortignon (Milano)

HYBRID Model – Main ingredients ¹³³Sb: ¹³²Sn + 1π

→ Coupling matrix elements between single particle and CORE excitations are consistently calculated with the same SkX interaction

SPIN

Lesson Learned from ¹³³Sb

- **1. EXPERIMENT** gives evidence for **HIGH spin** and **MIXED** configurations
- 2. LARGE SHELL Model Calculations are NOT doable
- 3. New HYBRID Model:

Coupling of different type of CORE excitations (few nucleons, phonons) to valence particles

→ SATISFACTORY Agreement with Experiment

²¹⁰Bi

Couplings between valence proton and neutron

3- in 208Pb (34 Wu)

 Couplings between phonons and pn - pair

 208 Pb + 1 π + 1 ν

Doubly-magic SHELL CLOSURE At the Valley of Stability

The nuclei around ²⁰⁸Pb are **strongly influenced** by the very collective **3**⁻ **octupole phonon** of ²⁰⁸Pb, E_x = 2.6 MeV, B(E3) = 34 W.u

Particle-Phonon Multiplet in ²⁰⁹Bi: ²⁰⁹Bi(d,d'), ²⁰⁹Bi(α,α'), ..., Bohr-Mottelson Model (1970)

²⁰⁹Bi(n,γ)²¹⁰Bi – ILL Grenoble

²⁰⁹Bi(n,γ)²¹⁰Bi – ILL Grenoble

N.Cieplicka, PhD-Thesis, Krakow

Complete Low Spin Spectroscopy of ²¹⁰Bi

Comparison with SHELL Model

considering one valence proton and one valence neutron outside ²⁰⁸Pb frozen CORE

Only **few** Low-Spin States in the interval **2-3 MeV NOT** described by **SHELL Model**

Possible $3^{-}\otimes (\pi h_{9/2} \nu g_{9/2})$ configuration ?

 $E_{y}(3^{-}) = 2.6 \text{ MeV}$

Lesson Learned from ²¹⁰Bi

- **1. EXPERIMENT** gives **COMPLETE** spectroscopy of **LOW spin** states
- **2. SHELL** Model Calculations (with frozen CORE) **reproduce almost ALL states** originated from the couplings between valence particles
- 3. Above 2 MeV, states from *particles-phonon coupling appear*

Testing ground for the New HYBRID Model – CORE + 1 p + 1 n

Studies of COUPLINGS between ConclusionS PARTICLE and CORE excitations around DOUBLE SHELL CLOSURES

\rightarrow Key ingredients for

quenching of Spectroscopic factors, damping phenomena, hanarmonicity of vibrational spectra, ...

Impossible to describe by SHELL MODEL Calculations for A > 50 Up to now Mainly interpreted Phenomenologically

SURVEY of RECENT γ-spectroscopy DATA on excited structures near doubly magic nuclei (hard to reach)

- ⁴⁹Ca Multinucleon Transfer
- ¹³³Sb Neutron Induced Fission
- ²¹⁰ $Bi (n, \gamma)$

from Legnaro-INFN Laboratory and ILL (Grenoble)

 \rightarrow Experimental evidence for particle-phonon states

New Microscopic Approach: The Hybrid Model

→ Possible Basis for Future Theoretical Description of Complex excitations in Heavy Nuclei

The Collaboration

Milano University and INFN

A. Bracco, G. Benzoni, N. Blasi, F. Camera, F. Crespi, S. Leoni, B. Million, O. Wieland, R. Avigo, **S. Bottoni, G. Bocchi**, S. Ceruti, A. Giaz, **D. Montanari**, R. Nicolini, L. Pellegri, **P.F. Bortignon, G.Colò**, et al.

IFJ-PAN, Krakow, Poland

B. Fornal, A. Maj, P. Bednarczyk,, M. Ciemala, N. Cieplicka, M. Kmiecik, M. Krzysiek, B. Szpak et al.,

Legnaro INFN Laboratory

G. DeAngelis, D. Napoli, J.J. Valiente-Dobon, L. Corradi, E. Fioretto, A. Stefanini et al.

Padova University and INFN

D. Bazzacco, E. Farnea, S. Lenzi, S.Lunardi, D. Mengoni, G. Montagnoli, F. Recchia, F. Scarlassara, C.Ur, et al.

IFIN-HH Bucharest

N. Marginean, D. Bucurescu, C. Mihai, C. Nita et al.

CSIC-University of Valencia

A. Gadea

EXILL Collaboration

G. DeFrance, A. Blanc, U. Koster, M. Jentschel, C. Michelagnoli, P. Mutti, G. Simpson, J.M. Regis et al.

Thank You for the Attention