Understanding properties of the QGP on the basis of correlation and fluctuation measurements at RHIC and LHC

Rene Bellwied

Nucleus Nucleus 2015
21-26 June 2015 Dipartimento di Fisica ed Astronomia, Università di Catania
Overcoming the strong force using compressed matter at relativistic energies

QCD phase transition (deconfinement, chiral symmetry restored)

LHC: max. energy = max. T = max. transparency = min. density

RHIC: reduced energy and T = stopping = finite density
Evolution of a RHIC heavy ion collision (as a function of temperature and time)

Model: IQCD hadronization
Effect: hadronization
Freeze-out surface: T_{crit}
Temperature (MeV): 151
Expansion velocity (c): $b=0.45$

Expansion velocity (c): $b=0.6$

Temperature (MeV):
- 151
- 148
- 80

Expansion velocity (c):
- $b=0.45$
- $b=0.6$

Experiment time:
- ~5 fm/c
- ~4 fm/c

References:
Lattice QCD:
- arXiv:1005.3508
- arXiv:1107.5027

Statistical Hadronization:
- hep-ph/0511094
- nucl-th/0511071

Blastwave:
- nucl-ex/0307024
- arXiv:0808.2041

Hydro condition? T_{init}

370 MeV

τ_0

T_{QGP}

τ_{QGP}

Experiment: time:
(STAR, PRL 97:132301,(2006))
The cooling of the hot QCD vacuum and the hot QCD medium

Lattice QCD calculation, Adelaide Group

Time evolution of initial conditions in hydro (J. Nagle et al.)
Ongoing analyses:
Analogy to early universe - evolution of fluctuations & correlations

The Universe: Slow Expansion

- Afterglow Light Pattern
- Inflation
- Dark Ages
- Development of Galaxies, Planets, etc.
- 1st Stars about 400 million yrs.
- Big Bang Expansion
- 13.7 billion years

credit: NASA

Heavy-ion Collisions: Rapid Expansion

- Collision evolution
- Expansion and cooling
- Kinetic freeze-out
- Hadronization
- Distributions and correlations of produced particles
- QGP phase
- Quark and gluon degrees of freedom
- Lumpy initial energy density

- Collision overlap zone
- Quantum fluctuations

- $\tau \sim 0 \text{ fm/c}$
- $\tau_{0-1} \text{ fm/c}$
- $\tau \sim 10 \text{ fm/c}$

particle distribution in η and ϕ in STAR
Correlation Measurements
Smooth initial conditions?

- If a static thermalized system is formed, the emissions would be isotropic.

- Equal probability for each particle in any direction of emission.

- In high energy nuclear and particle physics we expect specific correlation effects:
 - Resonance decay
 - Radial flow
 - Anisotropic flow (geometry)
 - Jet fragmentation
Quantifying anisotropy and collectivity

Hydrodynamics: strong coupling, small mean free path: many interactions
NOT plasma-like system behaves liquid-like.

Hydro measures level of viscosity/entropy ratio (η/s)
The smaller, the more ideal the liquid is (quantum limit = $1/4\pi = 0.08$)
Number correlations in coordinate space as a f(centrality)

Lots of structure in emissions
Lesson from RHIC – a near perfect Quark Soup?
Higher harmonics of initial energy density fluctuations

\[\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos n(\phi - \psi_n) \rightarrow \left< \frac{dN_{\text{pairs}}}{d\Delta\phi} \right> \propto 1 + \sum_{n=1}^{\infty} 2 \left< v_n^2 \right> \cos n(\Delta\phi) \cdots \]
Example: Residual & fit decomposition for 30 – 40% centrality

- **Momentum conservation**
 - $\cos(\Delta \phi)$

- **Elliptic flow**
 - $\cos(2 \Delta \phi)$

- **Triangular flow**
 - $\cos(3 \Delta \phi)$

- **Higher harmonics**
 - ……

Decomposition

- Offset
- 1d Gaussian
- Exponent
- 2d Gaussian

String fragmentation
- Resonances/HBT/e+e-
- Modified jet fragmentation

Data
- STAR
- Cu+Cu 200GeV

Fit

Residual

$\chi^2/#\text{dof} \approx 1.6$
Significant precision to high pT and for higher order harmonics
Initial State determines flow strength

Nucleonic or sub-nucleonic structure in density fluctuations?

Glauber

CGC

Radial gluon distribution

Gluon density fluctuations

Nucleon density fluctuations

2-D density profile

Smaller eccentricity

larger eccentricity

IP-Glasma gluon saturation
Flow measurements validate hydrodynamic modeling

Recent theory development: a hybrid approach with hydro and IC
IP-Glasma IC and viscous hydro (MUSIC) (McGill+BNL, PRL 110,012302 (2013))
Resolving the sub-nucleonic quantum structure: From the largest to the smallest systems

IP-Glasma more consistent with U+U data than Glauber

Initial State fluctuations occur at parton level

Can we resolve the number of sub-nucleonic scattering centers in small systems?
Multi-particle correlations in small systems (pPb, dAu, even pp?)

- v_2 in p-Pb is smaller than v_2 in Pb-Pb at comparable multiplicities
- v_3 in p-Pb is similar to v_3 in Pb-Pb at comparable multiplicities
- Multi-particle v_2 is a strong hint of collectivity
The dagger in the heart for non-flow explanations?

This is a mass dependent multi-particle correlation, i.e. it must be a collective phenomenon? Multi-gluon interactions can explain two-particle correlations (Gyulassy)
Flow measurements constrain initial conditions

- LHC fit to v_n's yields $\eta/s = 0.20$, RHIC fit yields $\eta/s = 0.12$
- Different η/s indicates temperature dependence of viscosity?
A power spectrum for QGP = analog to the WMAP

An acoustic horizon in fluid dynamics (e.g. arXiv:1101.1926)

Gaussian width can be related to length scales like mean free path, acoustic horizon, 1/(2\pi T)…

How much more does the full harmonics spectrum constrain the medium parameters (e.g. η/s)?
Experimental confirmation of QCD EoS

Using multi-variate analysis on RHIC & LHC data
(from latest climate/cosmology techniques)

S. Pratt et al.
PRL 114 (2015)
What happens at lower energies?

From LHC energies down to 39 GeV v_2 stays almost constant. Below these energies the system does not follow ‘ideal’ hydro anymore.

This coincides with a sign change in v_1. Softest point? Changing EOS.
Fluctuation Measurements
The critical point (theoretical approach)

• For a Gaussian distribution: skewness and kurtosis are zero.
 • Look for non-Gaussian distribution near critical point
 • Baseline for net-quantitites: Skellam (folded Poissonians)
• Fluctuations depend on correlation length

Theories / Models: PNJL, Dyson Schwinger, Lattice, NLSM

Extrapolated curvature from lattice
Karschmann et al. PRD 81 (2010) 014504,
Endrodi, Fodor, Katz, Szabo, JHEP 1104 (2011) 001
Cseh, Cosmai, Papa, PRD 89 (2014) 074512

CEP at large μ

\[T_{c}^{\chi_{s}}(\mu) \]

\[T_{c}^{\psi}(\mu) \]

freezeout

\[\sqrt{s_{NN}} \approx \begin{cases} 130 \text{ GeV} & \text{RHIC}, \\ 17 \text{ GeV} & \text{SPS}, \\ 9 \text{ GeV} & \text{SPS}, \\ 5 \text{ GeV} & \text{AGS}. \end{cases} \]
The critical point (experimental approach): measure net-distributions and calculate moments

STAR distributions: the means shift towards zero from low to high energy
Then: calculate moments (c_1-c_4: mean, variance, skewness, kurtosis)

![Net-charge distribution](image1)

![Net-Proton distribution](image2)
The sigma field is isospin blind and its coupling can be applied to each particle species (net-baryon = net-proton = proton distribution).

The coupling strength depends on the particle mass, i.e., proton should show the strongest fluctuations, pions should not show much fluctuations (net-charge might be flat, net-protons need to show fluctuations).

The higher the moment, the stronger the fluctuations. Kurtosis changes its sign near critical point.
Searching for the critical point
Measuring higher moments of net-charged and net-protons (STAR)

arXiv:1402.1558

14.5 GeV
The latest (preliminary) RHIC results

Minima in v1 slope and kurtosis fluctuations coincide.
Latest STAR kurtosis results over extended momentum range show rise in fluctuations at higher mB. (caution: rapidity dependence not well understood)

BES-II runs in 2019/2020 at RHIC deliver necessary statistics
Chemical freeze-out parameters at RHIC & LHC: The ‘proton or strange quark anomaly?’

This looks like a good fit, but it is not \(\chi^2/\text{NDF} \) improves from 2 to 1 when pions and protons are excluded.

Fit to pions and protons alone yield a temperature of 148 MeV.

Several alternate explanations:

- Different \(T_{ch} \) for light and strange
- Inclusion of Hagedorn states
- Non-equilibrium fits
- Baryon annihilation
A novel fluctuation analysis

Use different higher moments ratios to determine the chemical freeze-out parameters \((T, \mu_B)\) from first principle lattice QCD and compare to HRG

(Karsch:1202.4173):
\[
\kappa_B \sigma_B^2 \equiv \frac{\chi_{4,B}^{B,T}}{\chi_{2,B}^{B,T}} = \frac{\chi_{4,B}^{B}(T)}{\chi_{2,B}^{B}(T)} \left[1 + \frac{1}{2} \frac{\chi_{6,B}^{B}(T)}{\chi_{4,B}^{B}(T)} (\mu_B/T)^2 + \ldots \right]
\]

Consistency between data, HRG, and lattice

Higher moments are more sensitive to freeze-out conditions than particle yields. Proton and charge fluctuations, which are dominated by light quarks show lower chemical freeze-out temperature.

Simultaneous HRG fit to net-charge and net-protons (P. Alba et al., arXiv: 1403.4903)

Table:

<table>
<thead>
<tr>
<th>\sqrt{s} [GeV]</th>
<th>$\mu_{B,ch}$ [MeV]</th>
<th>T_{ch} [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>326.7±25.9</td>
<td>135.5±8.3</td>
</tr>
<tr>
<td>19.6</td>
<td>192.5±3.9</td>
<td>148.4±1.6</td>
</tr>
<tr>
<td>27</td>
<td>140.4±1.4</td>
<td>148.5±0.7</td>
</tr>
<tr>
<td>39</td>
<td>99.9±1.4</td>
<td>151.2±0.8</td>
</tr>
<tr>
<td>62.4</td>
<td>66.4±0.6</td>
<td>149.9±0.5</td>
</tr>
<tr>
<td>200</td>
<td>24.3±0.6</td>
<td>146.8±1.2</td>
</tr>
</tbody>
</table>

lattice QCD : S. Borsanyi et al., arXiv: 1403.4576
Conclusions – Discussion points

- Particle correlation measurements at RHIC and LHC establish the collectivity of the QCD phase of matter.

- Viscosity at LHC is slightly larger than at RHIC, but still close to the quantum limit, which is in agreement with strong coupling expectations.

- Small systems show collective effects which can be described by hydrodynamics, whereas the description via multi parton interactions is difficult for multi-particle correlation measurements ($v_2(4)$ and above, v_3).

 - The precise multi-particle measurements enable insight into the density distribution in the sub-nucleonic structure of the smallest and largest systems.

- Measurements at lower energies establish a QCD transition point.

- Is this point a critical point? The results are suggestive but still inconclusive.

- Fluctuations also allow us to determine freeze-out surfaces from first principle and might hint at an intriguing flavor hierarchy during the QCD transition.
Backup
How small is too small?

Buzz of the month:

multi-parton interactions = color reconnection = pomeron ladders = partonic cascade?
What goes down must come up….

The lack of structure in the net-charge compared to the net-protons can be understood by the different coupling of specific species to the sigma field.

But the negative kurtosis that might cause the dip near 20 GeV needs to be followed by a strong enhancement (positive kurtosis) at lower energies. The trends in the 14.5 GeV data provide a crucial test.
The softest point (changing EOS)

Measuring directed flow (v_1) and HBT in BES (STAR, PHENIX)
Topics I plan to address

• **Correlation Measurements at RHIC and the LHC**
 • The softest point (flow and HBT measurements at RHIC)
 • Critical point searches at RHIC
 • Chemical freeze-out parameters
 • Low mass dileptons

• **Fluctuation Measurements at RHIC and the LHC**
 • Critical point searches at RHIC
 • Thermalization of charm
 • NCQ scaling and recombination

• **Small systems – hot or not ?**
 • Flow and particle production in pp and pPb
 • Color reconnection – is it interesting ?
The model descriptions

From Initial State to Initial Conditions
Weakly coupled, strongly interacting system = high gluon density = CGC ?
multi-parton interactions = color reconnection = pomeron ladders

The evolution
Transport: multi-parton interactions = partonic cascade ?
(BAMPS, EPOS, AMPT)
Or
Hydrodynamics
(hybrid codes, IP-Glasma, Echo-QGP, VISHNU)

Hadronization
Cooper-Frye, lattice QCD, SHM-HRG
An exciting prospect for the future:
Event engineering

• The e-by-e statistics at the LHC enable event classification on the basis of harmonics measurements. (PLB 719 (2013) 394)

Future studies: explore PID dependent dynamic fluctuations and multiplicity distributions e-by-e.
System size evolution of kinematics and source

ALICE, charged particles $|\eta|<0.3$, $0.15<p_T<10.0$ GeV/c

$\langle p_T \rangle$ (GeV/c)

N_{ch}

Radius (fm)

GLASMA $pp R_{initial}$
GLASMA $p-Pb R_{initial}$
GLASMA $Pb-Pb R_{initial}$
GLASMA $pp R_{hydro}$
GLASMA $p-Pb R_{hydro}$
GLASMA $Pb-Pb R_{hydro}$

$\sqrt{s} = 7$ TeV
$\sqrt{s_{NN}} = 5.02$ TeV
$\sqrt{s_{NN}} = 2.76$ TeV

ALICE pp
ALICE $p-Pb$
ALICE $Pb-Pb$

Nucleus Nucleus 2015
21-26 June 2015: Dipartimento di Fisica ed Astronomia, Università di Catania
Where does it all begin / end?

Energy dependence of QCD matter
Rapidity dependence of STAR net-proton kurtosis fluctuations

\[\kappa^2_{\text{net-proton}} \]

- \(\sqrt{s_{\text{NN}}} = 7.7 \text{ GeV} \)
- \(\sqrt{s_{\text{NN}}} = 27 \text{ GeV} \)
- 7.7 GeV BES-II