

Light nuclei and hypernuclei from Lattice QCD (A=2,3,4)

Assumpta Parreño (U Barcelona)

for the NPLQCD Collaboration

Nucleus Nucleus Collísíons 2015 June 22, 2015 @ Uníversità di Catania, Italy

Study of Strongly Interacting Matter

GOBIERNO MINISTERIO DE ESPAÑA DE CIENCIA E INNOVACIÓN

Generalitat de Catalunya Departament d'Economia i Coneixement

- ✓ quarks and gluons confined into coulourless bound states: hadrons (p , n , π ...)
- \checkmark quarks strongly coupled
- perturbation theory breaks down: need of other formulations, computational techniques
- ✓ keep the basic degrees of freedom (quarks, gluons) and develop non-perturbative methods (Lattice QCD)

Perturbation theory applicable

(nn-online.org)

Total elastic cross-section	$\Lambda \ p \to \Lambda \ p$	Total elastic cross-section	$\Sigma^- p \rightarrow \Sigma^- p$
momentum range number of	SGT (mb) reference		
(MeV/c) events		momentum range number of	SGT (mb) reference
120 - 150 34	212 +/- 36 \$1.68	(MeV/c) events	
120 - 150 54	209 +/- 58 SE68	100 1000 6	10 + 6 4 9761
150 - 180 48	141 +/- 20 AL68	125 - 165 25	166 +/_ 33 PU67
150 - 180 28	177 +/- 38 SE68	130 - 140 14	184 + - 52 = 171
150 - 400 11	34 +/- 10 PI64	135 - 145	207 +/- 85 D066
150 - 600 6	22 +/- 10 GR63	140 - 145 19	152 +/- 38 EI71
180 - 210 80	141 +/- 16 AL68	145 - 150 30	146 +/- 30 E171
180 - 210 49	153 +/- 27 SE68	145 - 155	198 +/- 48 D066
200 - 400	24.0 +/- 5.0 KA71	150 - 155 49	142 +/- 25 EI71
210 - 240 88	95 +/- 10 AL68	155 - 160 81	164 +/- 32 EI71
210 - 240 54	111 +/- 18 SE68	155 - 165	189 +/- 32 D066
240 - 270 92	81 +/- 8 AL68	160 - 165 107	138 +/- 19 EI71
240 - 270 59	87 +/- 13 SE68		113 +/- 16 EI/1
270 - 320 36	56 +/- 9 AL68	1500 - 2500 11	13.2 + - 4.7 CH70
270 - 330 20	40 +/- 11 SE68	2500 - 4000 4	7.5 ±/_ 3.9 CH70
400 - 500	26 0 ±/- 7 0 N277	2500 - 4000 4	7.5 774 5.8 6076
400 - 600	$9.0 \pm 1 = 2.0 \times 171$		
400 - 638 7	24.7 + 7 - 9.3 AL61		
400 - 700	14.0 + / - 3.5 CL67		
400 - 1500	42 +/- 16 AR62		
500 - 600	7.0 +/- 4.0 HA77		
500 - 1000 4	40 +/- 20 CR59		
500 - 1000 20	22.2 +/- 5.0 CH70		
500 - 1200 86	25 +/- 4 BE64		
600 - 700	16.5 +/- 3.5 KA71		
600 - 700	9.0 +/- 4.0 HA77		
600 - 1500 20	19 +/- 5 GR63		
639 - 1000 7	20.4 +/- 7.7 AL61		
700 - 800	10.8 +/- 2.7 KA71		
700 - 800	13.6 +/- 4.5 HA77		
700 - 1000	15.5 +/- 3.5 CL67		
800 - 900	10.2 +/- 2.7 KA/1		
900 - 1000	9.0 ±/_ 2.7 ¥571		
900 - 1000	11.3 +/- 3.8 HA77		

(nn-online.org)

Total elastic cross-section	$^{n} \qquad \Lambda \ p \to \Lambda \ p$	Total elastic cross-section	$\Sigma^- p \rightarrow \Sigma^- p$
momentum range number	of SGT (mb) referenc	a	
(MeV/c) event	15	momentum range number of	SGT (mb) reference
120 - 150 34	212 +/- 36 AL68	(MeV/C) events	
120 - 150 14	209 +/- 58 SE68	100 - 1900 6	10 + 6 - 4 ST61
150 - 180 48	141 +/- 20 AL68	125 - 165 25	166 +/- 33 RU67
150 - 180 28	177 +/- 38 SE68	130 - 140 14	184 +/- 52 EI71
150 - 400 11	$34 \pm 7 = 10$ P164 22 \pm 7 = 10 CP63	135 - 145	207 +/- 85 D066
180 - 210 80	141 + - 16 AL68	140 - 145 19	152 +/- 38 E1/1 146 +/- 30 P171
180 - 210 49	153 +/- 27 SE68	145 - 155 50	198 +/- 48 D066
200 - 400	24.0 +/- 5.0 KA71	150 - 155 49	142 +/- 25 EI71
210 - 240 88	95 +/- 10 AL68	155 - 160 81	164 +/- 32 EI71
210 - 240 54	111 +/- 18 SE68	155 - 165	189 +/- 32 D066
240 - 270 92	81 +/- 8 AL68	160 - 165 107	138 +/- 19 EI71
240 - 270 59	87 +/- 13 SE68	165 - 170 106	113 +/- 16 EI71
270 - 320 36	56 +/- 9 AL68	500 - 1500 6	13.2 +/- 4.7 CE70
270 - 330 20	40 T/- II SE00	2500 - 4000 4	7.5 +/- 3.8 CH70
400 -	17.2 +/- 0.0 18/7	2500 - 1000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
400 - 000		200	
400		- 300	
400 - 1	$\Lambda n \rightarrow \Lambda n$	∇^{-}	$n \rightarrow \overline{\Sigma} n$
400 - 1	$Ap \rightarrow Ap$	<u> </u>	p->2 p
500 - 250 -	-	250	_
500 - 10			
500 - 10			
500 - 1	├ ── ∲ ──┤	2	
600 - E 200 -	T		-
600 - 11 D		6 Н Т	
639 - 10	· - ·		
700 - 150 -	<u> </u>		
700 - 1			
700 - 10		ᆂ┤	
800 - 1	— <u> </u>		H
800 - 100			
900 - 10 110	125 140 155 170 185	200 110 125 140 155 1	170 185 200
500 - 1	p_{lab} (MeV/c)	p _{lab} (MeV/c))

Hypernuclei: Bound nuclear states containing strange baryons (hyperons)

JPARC, DAPHNE, FAIR, GSI, JLAB, ...

For numerical calculations in QCD, the theory is formulated on a (Euclidean) space-time lattice ((anti) periodic (time) spatial boundary conditions) $N_s x N_s x N_s x N_t$

For numerical calculations in QCD, the theory is formulated on a (Euclidean) space-time lattice ((anti) periodic (time) spatial boundary conditions) $N_s x N_s x N_s x N_t$

$$L >> \text{ relevant scales }>> b \quad \left(\frac{1}{L} << m_{\pi} << \Lambda_{\chi} << \frac{1}{b}\right) \qquad \Rightarrow \text{ finite number of d.o.f.}$$
(finite volume)

bL >>1 fm (fundamental scale of QCD) with b <<1 fm nucleon-nucleon scattering $\Rightarrow L > 2\pi \ m_{\pi}^{-1}$

Significant computational resources required for calculations @ $m_{u,d}^{phys}$ (petascale)

USE UNPHYSICAL VALUES OF THESE PARAMETERS

Published works have L \leq 7 fm, b < ~ 0.1 fm and m_{π} \geq 200 MeV

sources of systematic errors in the numerical simulation finite volume *L*, discretization (finite spacing) *b*, value of the light quark masses

 $N_s x N_s x N_s x N_t$

$$\operatorname{Cost} \approx \left[\frac{1}{m_q}\right] \left[L\right]^a \left[\frac{1}{b}\right]^{\gamma}$$

USE UNPHYSICAL VALUES OF THESE PARAMETERS

A. Parreño @ NN2015 Catania, Italy June 22, 2015

$$\underbrace{64^{3} \times 256}_{L^{3} \times T} \times 3_{color} \times 4_{spin} \approx 10^{11} \text{ degrees of freedom}$$

only practical way for this type of computation → Monte Carlo integration

LQCD is a non-perturbative implementation of Field Theory, which uses the Feynman path-integral approach to evaluate transition matrix elements

Our continuous Path-Integral (QCD partition function):

oscillating phase

→ each path contributes a phase

LQCD is a non-perturbative implementation of Field Theory, which uses the Feynman path-integral approach to evaluate transition matrix elements

Our continuous Path-Integral (QCD partition function):

By rotating to Euclidean time:

$$-iS_{QCD}[\varphi(x)] = -i\int d^3x \, dt \, \mathcal{L} \xrightarrow{t \to -i\tilde{t}} - \int d^4x \, \tilde{\mathcal{L}} = -\tilde{S}_E \qquad \text{decaying exponential}$$

Now, the weight of each path is a real positive quantity

BASIS OF NUMERICAL SIMULATIONS LQCD is a non-perturbative implementation of Field Theory, which uses the Feynman path-integral approach to evaluate transition matrix elements

Our continuous Path-Integral (QCD partition function):

By rotating to Euclidean time:

$$-iS_{QCD}[\varphi(x)] = -i\int d^3x \, dt \, \mathcal{Z} \xrightarrow[t \to -i\tilde{t}]{} - \int d^4x \, \tilde{\mathcal{Z}} = -\tilde{S}_E \qquad \text{decaying exponential}$$

Now, the weight of each path is a real positive quantity

BASIS OF NUMERICAL SIMULATIONS

$$Z = \int DU \left\{ \int D\psi \ D\overline{\psi} \ e^{-\overline{\psi}Q(U)\psi} \right\} e^{-S_g[U]} = \int DU \ \det Q(U) \ e^{-S_g[U]} \sim \mathbf{P}(\mathbf{U})$$
$$\det \left[Q_f(A) \right] = \det \left(\mathcal{D}[A] + m \right)$$
(quark matrix)

1. Generate an ensemble of N gauge-field configurations $\{U_i\}$ according to the probability distribution P(U)

$$Z = \int DU \left\{ \int D\psi \ D\overline{\psi} \ e^{-\overline{\psi}Q(U)\psi} \right\} e^{-S_g[U]} = \int DU \ \det Q(U) \ e^{-S_g[U]} \sim \mathbf{P}(\mathbf{U})$$
$$\det \left[Q_f(A) \right] = \det \left(\mathcal{D}[A] + m \right)$$
(quark matrix)

expectation values

$$\langle O \rangle = \frac{1}{Z} \int DU D\overline{\psi} D\psi O[\psi, \overline{\psi}, U] e^{-S_E[U, \overline{\psi}, \psi]}$$

When computing expectation values of any given operator *O*, the quark fields in *O* are re-expressed in terms of quark propagators using Wick's Theorem: **write all possible contractions for the fields** (removing the dependence of quarks as dynamical fields)

$$\pi^+ = d\gamma_5 u$$
 only possible (Wick) contractions:

$$\langle \pi^{\dagger}(x) \pi(y) \rangle = \langle \overline{u}(x) \gamma_{5} d(x) \overline{d}(y) \gamma_{5} u(y) \rangle$$

2. Use the N gauge-field configurations previously generated to calculate the quark propagators on each configuration $Q^{-1}[U_i]$

3. Contract propagators onto correlation functions $C_i(t)$ $(t_0=0)$

$$C(\Gamma^{\nu},\vec{p},t) = \sum_{\vec{x}_1} e^{-i\vec{p}\vec{x}_1} \Gamma^{\nu} \left\langle J(\vec{x}_1,t) \overline{J}(\vec{x}_0,0) \right\rangle$$

$$C(t) = \langle 0 | \phi(t) \phi^{\dagger}(0) | 0 \rangle \longrightarrow \langle \phi | e^{-Ht} | \phi \rangle = \sum_{n} \langle \phi | e^{-Ht} | n \rangle \langle n | \phi \rangle = \sum_{n} |\langle \phi | n \rangle|^{2} e^{-E_{n}t}$$

$$\phi(t) = e^{Ht} \phi e^{-Ht} \qquad \xrightarrow{t \to \infty} Z_{0} e^{-E_{0}t}$$

$$\max$$

for baryons, the noise grows exponentially with time poor signal-to-noise ratio nucleons:

 m_{π} ~390 MeV, L_{s} ~ 2.5 fm, b=0.123 fm

NPLQCD, Phys.Rev. D81 (2010) 054505

 $m_{\pi}{\sim}390$ MeV, $~L_{\rm s}{\,\sim}$ 2.5 fm, b=0.123 fm

NPLQCD, Phys.Rev. D81 (2010) 054505

LQCD calculations involving A > 2 particles

Greater complexity of multinucleon systems as compared to single meson and baryon calcs

Wick contractions at que quark level, to form the correlation function is naively $N_u! N_d! N_s!$

$$((A+Z)!(2A-Z)!)$$
³H \rightarrow 2880
⁴He \rightarrow 518400

Expectation is that for A nucleons:
$$\exp\left[A\left(M_{N}-\frac{3m_{\pi}}{2}\right)t\right]$$

 \sqrt{N}

 m_{π} ~390 MeV, L_{s} ~ 2.5 fm, b=0.123 fm

NPLQCD, Phys.Rev. D81 (2010) 054505

We can also extract the energy of the interacting system for a given $\{m_{\pi}, L, b\}$ set

$$\Delta E_0 = \frac{p^2}{M} = \frac{4\pi a}{ML^3} \left[1 - c_1 \frac{a}{L} + c_2 \left(\frac{a}{L}\right)^2 + \dots \right]$$
Ground state

Recovering M. Lüscher, Commun. Math. Phys. 105, 153 (1986) (L>>a)

energy shift

 m_{π} ~390 MeV, L_s ~ 2, 2.5, 3, 4 fm, b=0.123 fm

Going beyond A=2

infinite volume extrapolations with enough statistics for (hyper) nuclear systems

energy splittings in nuclear physics are small \rightarrow Need of high statistics calculations

Move to heavier quark masses:

resources required to generate configurations and q-propagators are smaller degradation in the signal-to-noise ratio in multinucleon correlation functions is reduced

calculations at the SU(3)-flavor symmetric point

L/b	T/b	β	$b m_q$	<i>b</i> (fm)	<i>L</i> (fm)	T (fm)	m_{π} (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{\rm cfg}$	N _{src}
24	48	6.1	-0.2450	0.145	3.4	6.7	806.5(0.3)(0)(8.9)	14.3	28.5	3822	96
32	48	6.1	-0.2450	0.145	4.5	6.7	806.9(0.3)(0.5)(8.9)	19.0	28.5	3050	72
48	64	6.1	-0.2450	0.145	6.7	9.0	806.7(0.3)(0)(8.9)	28.5	38.0	1905	54

NPLQCD, PRD 87, 034506 (2013); PRC 88, 024003 (2013)

physical strange quark mass no physical light-quark masses yet only one lattice spacing

Anisotropic lattices: N_t >> N_s

(N_f=2+1 clover-improved Wilson fermion actions)

higher resolution in the time direction:

better study of noisy states better extraction of excited states reduce the systematic due to fitting (confident plateaus)

Going beyond A=2			$SU(3)_f$			NPLQCD Phys.Rev. D87 (2013), 034506		
			$(\pi, J^2, J_z, s, A, I^2, I_z)$			(no e.m. interactions)		
	Label	Α	8	Ι	J^{π}	Local $SU(3)$ irreps	This work	
	N	1	0	1/2	$1/2^+$	8	8	
	Λ	1	-1	0	$1/2^+$	8	8	
	Σ	1	-1	1	$1/2^+$	8	8	
	Ξ	1	-2	1/2	$1/2^+$	8	8	
	d	2	0	0	1+	$\overline{10}$	10	
	nn	2	0	1	0^+	27	27	
	$n\Lambda$	2	-1	1/2	0^+	27	27	
	$n\Lambda$	2	-1	1/2	1^{+}	$8_A,\overline{10}$		
	$n\Sigma$	2	-1	3/2	0^+	27	27	
	$n\Sigma$	2	-1	3/2	1^{+}	10	10	
	$n\Xi$	2	-2	0	1^{+}	8_A	8_A	
	$n\Xi$	2	-2	1	1^{+}	$8_A, 10, \overline{10}$		
	H	2	-2	0	0^{+}	1, 27	1, 27	
(³ H, ³ He	3	0	1/2	$1/2^{+}$	35	35	
	$^{3}_{\Lambda}{ m H}(1/2^{+})$	3	-1	0	$1/2^+$	$\overline{35}$		
	$^{3}_{\Lambda}{ m H}(3/2^{+})$	3	-1	0	$3/2^+$	$\overline{10}$	10	
	$^{3}_{\Lambda}\mathrm{He},^{3}_{\Lambda}\tilde{\mathrm{H}},\ nn\Lambda$	3	-1	1	$1/2^+$	$27, \overline{35}$	27 , 35	
	$^{3}_{\Sigma}$ He	3	-1	1	$3/2^+$	27	27	
	⁴ He	4	0	0	0+	$\overline{28}$	28	
	${}^4_{\Lambda}$ He, ${}^4_{\Lambda}$ H	4	-1	1/2	0^+	$\overline{28}$		
	$^{4}_{\Lambda\Lambda}$ He	4	-2	0	0^+	$27, \overline{28}$	27 , 28	

NPLQCD Phys.Rev. D87 (2013), 034506

For example, for the A=3 system:

$$(48^3 \times 64)$$

NPLQCD Phys. Rev. D87 (2013) 3, 034506

A. Parreño @ NN2015 Catania, Italy June 22, 2015

$$SU(3)_{f}$$

³Н́е

3

4

Use background magnetic fields

 $m_{\pi} \sim 800 \text{ MeV}$

$$e|B| = \frac{6\pi}{L^{2}}\tilde{n}, \quad \vec{B} = \hat{z} \cdot B \quad (e|B| \sim 0.046 \ \tilde{n} \ \text{GeV}^{2})$$

$$E(B) = M + \frac{|QeB|}{2M} - \mu \cdot B - 2\pi\beta |B|^{2} + \dots$$

$$\delta E^{B} = E^{B}_{+j} - E^{B}_{-j}$$

$$R(B) = \frac{C^{B}_{i,t}(t) C^{0}_{-j,t}(t)}{C^{B}_{-j,t}(t) C^{0}_{j,t}(t)} \xrightarrow{t \to \infty} Ze^{-\delta E^{B}t}$$

$$\delta E^{B} = -2\mu |B| + \gamma_{3} |B|^{3}$$

NPLQCD, Phys. Rev .Lett. 113 (2014) 25, 252001

2

 $|\tilde{n}|$

LQCD calculations of magnetic moments of light nuclei

A. Parreño @ NN2015 Catania, Italy June 22, 2015

Light nuclei and hypernuclei from Lattice QCD (A \leq 4)

Can we understand the properties of (small) nuclei directly from QCD?

Calculation of important quantities in nuclear physics with LQCD is only now becoming practical, with first calculations of simple multibaryon interactions being performed, although at unphysical quark masses.

Present day computing power begins to be sufficient to calculate nuclear properties in lattice QCD with near physical quark masses (completed calculations @ 430 MeV & on-going calcs. @ 300 MeV)

A chi<mark>ral extrapolation to the physica</mark>l pion mass may be possible if sufficiently many results at various pion masses are available.

Also, calculations at different lattice spacings are now at reach ($b \sim 0.1$, 0.08 fm)

LQCD calculations would be specially of interest for systems that are not accessible experimentally \rightarrow Complementary information to experimental programs not too far in the future.

"This is a long term project that can be done given sufficient resources. Once completed will definitely be transformative although each individual step may not be." (encouraging referee's comment)

р

р

р

n

р

Silas R. Beane & Emmanuel Chang (U of Washington, Seattle) William Detmold (MIT), Kostas Orginos (William and Mary & JLab), Assumpta Parreño (Barcelona), Martin J. Savage (INT, Seattle)

and

Saul Cohen, Huey-Wen Lin, Thomas C. Luu, Parikshit Junnarkar, Brian Tiburzi, André Walker-Loud