

Chiara Nociforo

GSI Helmholtzzentrum für Schwerionenforschung Darmstadt - Germany

12th International Conference on Nucleus-Nucleus Collisions, June 21-26, 2015, Catania, Italy

Introduction to the **Super-FRS** at FAIR

- new concept in-fligth RIB production and separation methods
- comparison FRS Super-FRS
- Technical challenges high intensity and high resolution in particle identification (PID)

Recent developments & in-beam tests of Super-FRS focal plane detector prototypes.

The NUSTAR facility at FAIR

Primary Beams

- 5x10^{11 238}U²⁸⁺ (pulsed)
 3.5x10^{11 238}U²⁸⁺ (DC)
 @1.5 GeV/u
- factor **100** in intensity over present

Secondary Beams

- broad range of RIBs up to 1-2 GeV/u
- up to factor **10000** in intensity over present

2-stage separation e.g. ¹⁰⁰Sn

- Strong reduction of contaminants
- Optimization of fragment rate
- Main separator used for secondary reaction studies

PID detector prototypes

Segmented plastic scintillator (ToF) Partner: IFJ Krakow

Twin **GEM-TPC** (x, y) Partner: Helsinki IP

Silicon (∆E, x, y) Partner: St. Petersburg

 $Z \leftarrow -dE / dx = f(Z, \beta)$ atomic number $A / Q = \frac{B \rho}{\gamma \beta m_u}$ $Z \neq Q$ charge state

Triple MUSIC (ΔE) Partner: CEA

Other diagnostics (ToF)

Technical challenges

Clean full PID on event-by-event basis

- \rightarrow momentum tagging $\Delta x \sim 1$ mm
- \rightarrow ToF measurements Δ ToF \sim 100ps (FWHM)
- \rightarrow charge resolution $\Delta Z \sim 0.2e$

Monte Carlo simulations (MOCADI)

Yields not scaled

Increasing intensity of radioactive beams requires detecting system with high-rate capability

ToF focal plane detectors

- units working in vacuum
- active area $10 10^4 \text{ mm}^2$
- total rate 1-10 MHz
- high precision time distribution and time stamping over 100 m

Radiation hard detector (diamond, silicon)

<u>pcCVD-DD</u> \longrightarrow (200 x 40) mm² , 20 units 20x20x0.3 mm³

• 100 days operation @1MHz: 1.08x10⁹ ions/mm²

Absorbed dose = 4.4×10^5 Gy (²³⁸U@350 MeV/u)

Radiation hardness study with Au beam - amplitude reduction

Threshold characteristics (Aug11): cut amplitudes lower than 35mV

 $\frac{+30 \% \text{ DAQ off} + 30 \% \text{ beam times in 2010}}{\Rightarrow 3.04 \text{ x } 10^{11} \text{ Au ions / mm}^2}$

Analog signals, Au beam, HV: 100V Amplitude; 94 mV

- → After 3.04 x 10¹¹ Au ions /mm² about 5% of signals below 35 mV
- → Total absorbed dose : 7.9 Grad (312 MeV / Au ion)
- \rightarrow Amplitude reduction by a factor of 2.7
- → Precise CCE measurment needed

1Grad = 10^7 Gy

Jerzy Pietraszko, ADAMAS 1st Workshop, GSI, Darmstadt, 16-18 December 2012

Diamond in-beam tests

<u>Feb 2014</u>

First test of (E6) pcCVD-DD samples at ACCULINNA separator with 40.5 MeV/u ⁴⁰Ar beam

- 4 Al contacts, $\Delta E \sim 20-600$ MeV (DBA amp, $V_{in} < 50$ mV)
- total rate 10^{11} ions/cm^2 , test with α particles

<u>Aug 2014</u>

First ToF measurements at FRS with 900 MeV/u ¹⁹⁷Au beam with (E6) pcCVD-DD 20x20x0.3 mm³

- 16-strip design: (1x18) mm² each (0.15 mm gap), C = 4.3 pF/strip
- metallization: 50nm/100nm (Cr/Au) by photolithography (GSI-DL)
- PADI7, gain ~250, 4x4chs

Electronics with ToT capability

PADI ASIC 0.18 μm CMOS

- rise time < 500 ps
- 30 fC <Q< 2000 fC
- σ_{tE} < 15 ps
- LVDS digital outputs
- 350 MHz bandwidth

Aug. 2011)

VFTX (28 chs) VME FPGA TDC

- LVDS inputs
- 200 MHz clock (external & internal)
- $\sigma_t < 10 \text{ ps}$

σ_{intr} contribution

S2-S4 Detector resolution

$$\sigma_{DD} = \sqrt{\sigma_{ToF}^2 - \sigma_j^2} = \sqrt{(45.7)^2 - (15)^2} = 43.2 \text{ ps}$$

$$\sigma_{intr,DD2} = 35 \text{ ps}$$
Measured PADI/VETX intrinsic time resolution: 15 ps (σ)

Irradiation test at LNS-INFN

<u>May 2015</u>

Series of irradiation of 10⁷ ¹²C/mm² s @62 MeV/u followed by data taking via digital scope (10 GS/s) at low rate to monitor the time resolution and CCE of pcCVD-DD (0.3mm) and scCVD-DD (0.09mm)

• beam current measured by ionization chamber IC

new chip PADI7D, 8x2
 chs (distance reduced),
 new threshold control

Preliminary results (run with collim.)

(E6) pcCVD-DD 10x10x0.3 mm³

Minimum absorbed dose = 1.8×10^6 Gy (${}^{12}C@62$ MeV/u) ≈ 400 days operation

Digital waveform analysis

0.30 0.28 0.26 640 ps (DBA el.) Amplitude (V) 0.24 (V) 0.22 (V) 0.20 (V (b) 675 - 675 - 650 - 650 - 625 - 62 220 mV 0.18 0.16 0.14 Time (hr) Time (hr)

- The in-flight magnetic separator Super-FRS under construction at FAIR is ideal for the next-generation experiments with RIBs
- ToF detectors are crucial to obtain a clean PID; results of in-beam tests of strip diamond detectors (processed in house) performed in conditions similar to that of the Super-FRS show that $\sigma_t \sim 25$ ps is achievable
- Preliminary results of irradiation tests on pcCVD-DD sample does not show any damage after an absorbed dose of 1.8x10⁶ Gy.

J. Fruehauf, M. Kiš, N. Kurz, F. Schirru, M. Träger, R. Visinka GSI, Darmstadt, Germany

M. Ciobanu Horia Hulubei National Institute for Physics and Nuclear Engineering, Magurele-Bucharest, Romania

> S. Schlemme TU Darmstadt, Germany