

Fusion measurements of ¹²C+ ¹²C at energies of astrophysical interest

Principal Investigator Cheng Lie Jiang (ANL)

Daniel Santiago-González dasago@anl.gov

Louisiana State University Argonne National Laboratory

Nucleus-Nucleus Collisions

Catania, Italy

June 25, 2015

Why do we care about fusion of ¹²C+¹²C?

- Ignition temp. in explosive scenarios
 - X-ray superbursts
 - Type la supernovae
- Carbon burning in highly developed stars
 - If low-energy resonances \rightarrow fast burning
 - If fusion hindrance \rightarrow slow burning
 - •¹²C \rightarrow stable, solid, abundant.
 - Low-energy beam.
 - Hasn't this been done before??
- Problems with existing data (low C.M. energies)
 - Low cross section (<10 nb!)
 - Large uncertainties (background, target impurities)
 - We still rely on extrapolations

What are energies of astrophysical interest?

Depends on star temperature.

- In this case 1 < E_{c.m.} < 3 MeV (Gamow window)
- Well below Coulomb barrier (~7 MeV in CM).

A popular measurement

 $S(E) = \sigma E e^{2\pi\eta}$

 Experimental limitations

- Intense + low-E
 beam = difficult
- Beam time! (few counts in ~10 h)
- Target contaminants

Fowler, et al., Annu. Rev. Astro. Astrophys. 13 69-112 (1975) **Extrapolations** Gasque, et al., Phys. Rev. C 72 025806 (2005) Jiang, et al., Phys. Rev. C 75 015803 (2007) Becker, et al., Z. Phys. A 303 305-312 (1981) Barron-Palos, et al., Eur. Phys. J. A 25 645-646 (2005) Spillane, et al., Phys. Rev. C 98 122501 (2007) 10^{16} S [MeV b] 10^{15} Exp. data Calc. Becker - Fowler Barron-Palos Gasque **Need more data!** Spillane Jiang 1.5 2.5 3 3.5 4.5 5.5 2 5 4 6 $E_{c.m.}$ [MeV] LSU

References:

5

CHALLENGE ACCEPTED

Need better data!

Cheng Lie (2009)

Fusion of ¹²C+¹²C (center of mass)

Gammasphere

- One of the best γ ray spectrometers in the world!
- ~ 4π solid angle coverage
- ~ 10% efficiency

LSU

- Compton suppressed
- Peak-to-total ratio ~ 60%
- Energy res. 3 keV at 1 MeV

Thanks to Brad DiGiovine for image.

Beam

Target and Si detector chamber

E_y(MeV) Results from coinc. technique

Preliminary results

Summary

- The cross section of the ¹²C+¹²C fusion reaction at energies well below the Coulomb barrier is important for models of stellar nucleosynthesis (Type Ia supernovae, X-ray superbursts).
- We were the first to measure the cross section using coincidence technique (since 2010).
- Our near-background-free measurements are consistent with previous measurements in the high-energy region but our lowest energy measurement indicates a fusion cross section slightly lower than those obtained with other techniques.
- The ramifications of using the fusion hindrance extrapolation method on simulations of the late stages of giant star evolution are substantial
- More data is needed for E_{c.m.} < 2.9 MeV.

Perspectives

- New measurements around $E_{c.m.} = 2.8$ MeV will be carried out at ANL using the gamma and charged particle coincidence technique.
- Exact energy will depend on 2-day measurement.
- The new data might help to discern between the extrapolations at low energy:
 - Fowler \rightarrow 'normal'
 - Cooper \rightarrow low-E resonance
 - Jiang+Esbensen \rightarrow hindrance

Collaboration

Fusion measurements of ${}^{12}C+{}^{12}C$ at energies of astrophysical interest

D. Santiago-González^{1,2}, C. L. Jiang², K. E. Rehm², M. Alcorta³, S. Almaráz-Calderón⁴, M. L. Avila², A. D. Ayangeakaa², B. B. Back², D. Bourgin⁵, B. Bucher⁶, M. P. Carpenter², S. Courtin⁵, H. M. David², C. M. Deibel¹, C. Dickerson², B. DiGiovine², X. Fang⁷, J. P. Greene², F. Haas⁵, D. J. Henderson², R. V. F. Janssens², D. Jenkins⁸, J. Lai¹, T. Lauritsen², A. Lefebvre-Schuhl⁹, D. Montanari⁵, R. C. Pardo², M. Paul¹⁰, D. Seweryniak², X. D. Tang¹¹, C. Ugalde², S. Zhu²

¹Department of Physics and Astronomy, Louisiana State University, USA, ²Physics Division, Argonne National Laboratory, USA, ³TRIUMF, Vancouver, Canada, ⁴Department of Physics, Florida State University, USA, ⁵IPHC and CNRS, Université de Strasbourg, France, ⁶Lawrence Livermore National Laboratory, USA, ⁷University of Notre Dame, USA, ⁸Department of Physics, University of York, U.K., ⁹IN2P3-CNRS and University of Paris Sud, France, ¹⁰Racah Institute of Physics, Hebrew University, Israel, ¹¹Institute of Modern Physics, Lanzhou, China

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and No. DE-FG02-96ER40978. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility.

Fusion measurements of ¹²C+ ¹²C at energies of astrophysical interest

Daniel Santiago-González (dasago@anl.gov)

Backup slides

Calc. fusion rates in different stellar env.

FIG. 1. (Color online) (Top) Astrophysical factors for the ¹²C+¹²C, ¹²C+¹⁶O, and ¹⁶O+¹⁶O reactions versus center-of-mass energy *E* of colliding nuclei. Various symbols show experimental data. (Middle) Normalized rates of these reactions versus temperature neglecting plasma screening effects. (Bottom) Rates of the same reactions versus temperature for three values of the density ($\rho = 10^6$, 10^9 , and 10^{10} g cm⁻³, $\rho_6 \equiv \rho/10^6$ g cm⁻³) in pure carbon matter (left), in a C-O mixture with 30% of carbon by mass (middle), and in pure oxygen matter (right). Thick lines refer to standard *S*-factors (either recent model calculations [1,2], denoted as Standard, or the formalism of Fowler *et al.* [5,6]. denoted as Standard1); thin lines refer to reduced *S*-factors (Jiang *et al.* [12]). See text for details.

Ref: Gasque, et al., Phys. Rev. C 72 025806 (2005)

Fusion hindrance [Jiang, et al., PRC 79, 044601 (2009)]

- one has to rely on extrapolation techniques.
- In the past, all extrapolations used optical model calculations which predicted a continuously rising S factor.
- Recent fusion experiments with medium-mass systems have revealed a hindrance of the fusion cross section which leads to a maximum of the S factor, followed by a decrease toward lower energies.
- For these medium-mass systems, which all have negative Q values, a maximum of the S factor should be expected because of
- energy conservation.
- While this hindrance has been associated with the incompressibility of nuclear matter at large density overlaps [41], a fully reliable theoretical description of the cross sections at subbarrier energies has yet to be developed.
- Extending the systematics developed at first for systems with
- a negative Q value to the fusion of light heavy ions leads
- to cross sections which are quite different from the ones
- obtained from optical model calculations. Other calculations
 - within the frameworks of the two-center shell model or
- fermionic molecular dynamics give cross sections which