

Nucleus-Nucleus 2015 Catania, 21-26 June 2015

FUSION REACTIONS OF 58,64Ni + 124Sn

FRANCO GALTAROSSA

INFN – Laboratori Nazionali di Legnaro Dipartimento di Fisica e Scienze della Terra – Università di Ferrara

OUTLINE

- > Introduction: fusion dynamics near and below the barrier
- Systematics for transfer effect and hindrance in sub-barrier fusion reactions
- The experiment: fusion reactions of 58,64Ni + 124Sn at the Laboratori Nazionali of Legnaro
- Experimental results and comparison with CC calculations

FUSION DYNAMICS NEAR AND BELOW THE BARRIER

C. L. Jiang et al., PRL 93, 012701 (2004) PRC 73, 014613 (2006) The low-lying collective structure of the colliding nuclei strongly influences the dynamics of low-energy fusion reactions, through CC effects.

At very low energies CC calculations overestimate the experimental cross sections. This may be an evidence of "fusion hindrance".

EFFECT OF TRANSFER ON FUSION CROSS SECTIONS

Recent measurements on 40Ca+40Ca, 40Ca+48Ca and 48Ca+48Ca show evidence for the effect of Q>0 transfer couplings at sub-barrier energies

G. Montagnoli et al., PRC 85, 024607 (2012)
C. L. Jiang et al., PRC 82, 041601(R) (2010)
A. M. Stefanini et al., PLB 679, 95 (2009)

4

Do we observe analogous effects when moving to heavier systems?

Heavy systems involving soft vibrational nuclei: multi-phonon excitations are dominant

A. M. Stefanini et al., EPJA 49, 63 (2013)

The results of Kohley et al. using the exotic ¹³²Sn beam

No significant difference between the various cases seems to show up in this picture but... What if we move to lower cross sections?

The low-energy behaviour of ^{58,64}Ni + ¹²⁴Sn has to be clarified. Transfer coupling effects are expected!

Z. Kohley et al., , Phys. Rev. Lett. 107 , 202701 (2011)

INFLUENCE OF TRANSFER: A PHENOMENOLOGICAL APPROACH

The curves are fits with the Wong formula:

$$\sigma = \frac{R_C^2}{2E} \hbar \omega \ln \left\{ 1 + \exp \left[\frac{2\pi}{\hbar \omega} (E - V_C) \right] \right\}$$

System	ħω (MeV)	
⁵⁸ Ni + ¹³² Sn	16.3 ± 1.0	
⁵⁸ Ni + ¹²⁴ Sn	11.4 ± 0.5	
	12.2 ± 0.9	
⁶⁴ Ni + ¹³² Sn	11.1 ± 0.6	
⁶⁴ Ni + ¹²⁴ Sn	9.8 ± 0.6	
	8.7 ± 7.5	

	⁵⁸ Ni+ ¹²⁴ Sn	⁶⁴ Ni+ ¹²⁴ Sn	⁵⁸ Ni+ ¹³² Sn	⁶⁴ Ni+ ¹³² Sn
Q (+1n)	0.510 MeV	-2.391 MeV	1.656 MeV	-1.245 MeV
Q (+2n)	5.952 MeV	0.615 MeV	7.833 MeV	2.497 MeV

C. L. Jiang et al., Phys. Rev. C 89, 051603(R) (2014)

SYSTEMATIC TRENDS

A larger curvature $\hbar\omega$ means a thinner barrier and then a fusion enhancement.

Larger "reduced" ħω, and larger transfer yields, are found for all systems with Q>0 transfer channels.

 σ = Total neutron transfer cross sections near the barrier $\frac{\hbar\omega}{Z_1Z_2}$ = Fitted reduced curvatures of the Coulomb barrier

SYSTEMATICS FOR HINDRANCE

No fusion hindrance is expected at the measured cross sections!

A standard Woods-Saxon potential can be used for the ion-ion interactions

THE EXPERIMENT

- Doubly-stripped beams of ^{58,64}Ni with charge states 11⁺ and 18⁺ respectively with a current of 1-3 pnA;
- ¹²⁴Sn target with a thickness of 50 μ g/cm² evaporated on a 20 μ g/cm² carbon backing. The isotopic abundance of ¹²⁴Sn was 96.6%.
- Four Si detectors placed around the target at 22.5° served as monitors to get the absolute cross sections;
- Two angular distributions were measured in the range $-4^{\circ} \le \theta \le 4^{\circ}$ at $E_{lab} = 246.1$ MeV and 234.0 MeV for the ⁶⁴Ni+¹²⁴Sn system.
- Evaporation residues were detected at 1° and 2° with the Legnaro electrostatic separator in its upgraded configuration.

<u>Electrostatic separator</u> and $E-\Delta E$ -TOF telescope to detect evaporation residues at ≈ 0 degrees

degraded beam ER, 97 mb fusion on target backing ER, 360 µb Energy

Time of Flight

Very good identification of evaporation residues!

- 1. The largest enhancement of the fusion cross section comes from inelastic excitations.
- 2. The system ⁵⁸Ni+¹²⁴Sn exhibits a larger influence from transfer reactions with respect to ⁶⁴Ni+¹²⁴Sn.

Transfer strenghts and spectroscopic factors for the CC calculations were taken from:

- H. Esbensen, C. L. Jiang and K. E. Rehm, Phys. Rev. C 57, 2401 (1998).
- C. L. Jiang *et al.*, Phys. Rev. C 57, 2393 (1998).
- J. Lee *et al.*, Phys. Rev. C 79, 054611 (2009).

Ch1 = no coupling 1-2n = one- and two-neutron transfer

1-3n = one-, two- and threeneutron transfer

Ch5 = one-phonon excitation Ch15 = two-phonon excitation (one- and two-phonon states and mutual excitations of the low-lying 2⁺ and 3⁻ states) Ch31 = three-phonon excitation (three mutual one-phonon excitations and mutual excitations of one- and twophonon states) Ch93 = inelastic (one, two and three phonons) + transfer (one and two neutrons)

CONCLUSIONS

- We measured the excitation functions for the fusion reactions of ^{58,64}Ni + ¹²⁴Sn with the Legnaro electrostatic separator down to 1 - 0.5 μb.
- We compared the experimental results with detailed CC calculations using a standard Woods-Saxon potential.
- As expected, no hindrance behaviour was observed at these cross sections.
- The influence of transfer was observed, in particular in the ⁵⁸Ni + ¹²⁴Sn system, in agreement with the Qvalue systematics previously described.

PHYSICAL REVIEW C 91, 044602 (2015)

Fusion reactions of ^{58,64}Ni + ¹²⁴Sn

C. L. Jiang,^{1,*} A. M. Stefanini,² H. Esbensen,¹ K. E. Rehm,¹ S. Almaraz-Calderon,¹ M. L. Avila,¹ B. B. Back,¹ D. Bourgin,³ L. Corradi,² S. Courtin,³ E. Fioretto,² F. Galtarossa,² A. Goasduff,⁴ F. Haas,³ M. M. Mazzocco,⁵ D. Montanari,³ G. Montagnoli,⁵ T. Mijatovic,⁶ R. Sagaidak,⁷ D. Santiago-Gonzalez,^{8,1} F. Scarlassara,⁵ E. E. Strano,⁵ and S. Szilner⁶
¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
²INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), Italy
³IPHC and University of Strasbourg, CNRS/IN2P3, 67037 Strasbourg Cedex 2, France
⁴CSNSM, CNRS/IN2P3 and University Paris-Sud, F-91405 Orsay Campus, France
⁵Dipartimento di Fisica e Astronomia, Universitá di Padova, and INFN, Sez. di Padova, IT-35131 Padova, Italy
⁶Ruder Boskovic Institute, HR-10002 Zagreb, Croatia
⁷Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation
⁸Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA (Received 13 January 2015; revised manuscript received 18 February 2015; published 3 April 2015)

Thank you for the attention

The case of the Ca+Zr systems

Transfer couplings affect the sub-barrier excitation functions of 40Ca + 96Zr (with Q>>0) down to very small cross sections. This is indicated by the comparison with other Ca + Zr systems and with CC calculations.

19

A. M. Stefanini et al., Phys. Lett. B728 (2014) 639

Fusion-evaporation and fusion-fission cross sections are taken from previous measurements and used to correct our experimental data

K. T. Lesko *et al.*, Phys. Rev. Lett. **55**, 803 (1985); Phys. Rev. C **34**, 2155 (1986).

F. L. H. Wolfs, W. Henning, K. E. Rehm, and J. P. Schiffer, Phys. Lett. B **196**, 113 (1987); F. L. H. Wolfs, Phys. Rev. C **36**, 1379 (1987).

C.L.Jiang et al., PRC 89, 051603(R) 2014