

Studying astrophysical reactions with low-energy RI beams at CRIB

Nuclear astrophysics group (CRIB supporting members) in Center for Nuclear Study, Univ. of Tokyo: H. Yamaguchi, D. Kahl, S. Hayakawa, Y. Sakaguchi, Y. Wakabayashi, T. Hashimoto, S. Kubono INFN-LNS

S. Cherubini, M. Gulino, C. Spitaleri, G.G. Rapisarda, M. La Cognata, L. Lamia, R.G. Pizzone, M.L. Sergi, S. Romano, and collaborators from other institutes N. Iwasa, T. Teranishi, T. Kawabata, Y.K. Kwon, D.N. Binh, L.H. Khiem, N.N. Duy, S. Kato, T. Komatsubara, A. Coc, N. de Sereville, F. Hammache, G. Kiss, S. Bishop

Outline

 Introduction of low-energy RI-beam facility "CRIB" (CNS, the Univ. of Tokyo).

Cryogenic gas target for RI beam production.

- Performed experiments
 - Resonant scattering experiments using thick-target method in inverse kinematics (TTIK). ⁷Li/⁷Be+ α as a recent example.
 - Trojan Horse Method with RI beams

¹⁸F(p,α) reaction cross section via ¹⁸F(d,αn). [CNS&INFN-LNS collaborated work]

- Direct measurements of (α, p) reactions using RI beams: with a normal gas target [¹¹C(α, p)] or an active target
- Active target for decay measurement:
- ¹⁶N beta-delayed α decay experiment performed in 2013. [CNS&INFN-LNS collaborated work]

CRIB

- CNS Radio-Isotope Beam separator, constructed and operated by CNS, Univ. of Tokyo, located at RIBF (RIKEN Nishina Center).
 - Low-energy(<10MeV/u) RI beams by in-flight method.</p>
 - Primary beam from K=70 AVF cyclotron.
 - Momentum (Magnetic rigidity) separation by "double achromatic" system, and velocity separation by a Wien filter.
 - Orbit radius: 90 cm, solid angle: 5.6 msr, momentum resolution: 1/850.

NN2015, Catania

CRIB in RIKEN RIBF

- AVF alone, operation cost ~1/10 of BigRIPS.
- Ion source / AVF/ CRIB...have been developed under CNS-RIKEN collaboration (joint venture).

Low-Energy RI beam Productions at CRIB

Direct reactions such as (p,n), (d,p) and (³He,n) in inverse kinematics are mainly used for the production...large cross section

Many **RI beams** have been produced at CRIB: typically 10⁴-10⁶ pps

NN2015, Catania

Intense secondary beam production using cryogenic gas target

- H₂ gas target of 760 Torr and 80 mm-long worked at 85K stably for a ⁷Li²⁺ beam of 1.3 pµA. (which deposits heat of 7.4W).
- Secondary beam: ⁷Be⁴⁺ at 4.0 MeV/u, purity 75% (without degrader/ WF),

2x10⁸ pps was achieved.

H. Yamaguchi et al., NIMA (2008)

NN2015, Catania

Recent research projects (2010-present)

•Proton/alpha resonant scattering

✓²⁶Si+p (Collaborated with Chung-Ang, Korea) H.S. Jung et al., PRC (2012&2014).

✓⁷Li/⁷Be+α (CNS) H. Yamaguchi et al., PRC (2011&2013).

✓²¹Na+p, ²²Na+p [¹⁸Ne(α ,p), Ne-Na cycle] (IMP/CIAE, China) PRC(R) & PRC (2013).

✓¹⁷F+p [Resonances for ¹⁴O(α,p)](IMP/CIAE, China) PRC(2014). ...and new alpha

scattering projects

•(α,p) reaction measurement, Active target (GEM-MSTPC)

✓¹⁸Ne(α,p) (Hashimoto; CNS ⇒ now at IBS)

✓³⁰S(α,p) (CNS, Daid Kahl)

✓²²Mg(α ,p) (IOP, Vietnam , Nguyen Ngoc Duy)

✓⁴⁴Ti(α ,p) (KEK, Ishiyama) ...⁴⁴Ti beam test successful.

•(α,γ)

 ${}^{16}N \Rightarrow {}^{16}O^* \Rightarrow {}^{12}C + \alpha \text{ for } {}^{12}C(\alpha, \gamma)$ (Catania, S. Cherubini) Measurement finished in Sep 2013. •Reaction mechanism

✓⁸B+Pb (Padova, C. Signorini) Measurement finished in May 2014.
•Implantation (⁷Be)

✓⁷Be implantation for commercial usage (RIKEN, A. Yoshida)

✓ The Brilliant+C project...Reaction study using implanted target

INFN-CNS(CRIB) collaborated works

2007/2008:

◆ "Study of the ¹⁸F+p→¹⁵O+α reaction at astrophysical energies"
 ¹⁸F+p, ¹⁸F+d THM experiments Spokesperson: S. Cherubini (INFN-LNS, France, Japan)

2013 Sep:

"Study of the beta-delayed alpha decay of ¹⁶N", Silvio Cherubini (18 days) (LNS, and many others).

2014 May:

 "Dynamics of the ⁸B interaction with ²⁰⁸Pb at the Coulomb barrier" Cosimo Signorini (8 days). (Padova, Napoli,+)...M. Mazzocco's talk on Tuesday.

and many test experiments for the above projects.

- MoU on low-energy nuclear physics between INFN-LNS (Catania), SKKU (Korea) and CNS (Japan, Tokyo) was made in 2013.
- Sicily-East Asia Workshop initiated in 2014.
- Anche grazie mille per il questo invito!

NN2015, Catania

⁷Li+ α /⁷Be+ α study

- ⁷Li(α,γ)¹¹B ...important at high-T, as a production reaction of ¹¹B (the v-process in core-collapse supernovae).
- ${}^{7}\text{Be}(\alpha,\gamma){}^{11}\text{B}$... one of the reaction in hot *p-p* chain, relevant at high-T.
- α -cluster structure in ¹¹B/¹¹C :
 - 2α+t/2α+³He cluster states are known to exist (similar to the dilute cluster structure in ¹²C.)
 - Several "bands" which have α-cluster structure could be formed. We can study the band and cluster structure more in detail.

⁷Li/⁷Be(α, γ) experimental study

- ⁷Li(α,γ) and ⁷Be(α,γ) were directly measured only at low-۲ lying resonances:
 - Paul et al., Phys. Rev. **164** (1967) 1332.

٠

Hardie et al., Phys. Rev. C, 29 (1984)1199. ٠

⁷Be(α,γ): only two resonances at E_r<1 MeV are included in the NACRE evaluation. $E_{\rm r}$ J^{π} $\overline{\Gamma_{\alpha}}$ (eV) $\omega\gamma$ (eV) Γ_{γ} (eV) Ref 0.560 $3/2^{-}$ HA84

 0.331 ± 0.041 0.350 ± 0.056 Ι $5/2^{-}$ 0.877 3.80 ± 0.57 12.6 ± 3.8 3.1 ± 1.3 HA84 Τ Resonant reaction dominates the reaction rate. Higher

11 + 7

- resonances may contribute at supernova temperature (>1 GK).
- We studied higher-lying resonances by the resonant • elastic scattering method, ⁷Li(α, α) and ⁷Be(α, α) at CRIB to obtain information on the resonances (energy, width, spin and parity).

⁷Be(α,γ) in supernovae

vp-process calculation (T₉>1) shows considerable contribution by ${}^{10}B(\alpha,p){}^{13}C$ and ${}^{7}Be(\alpha,\gamma){}^{11}C$ as much as the triple-alpha process.

NN2015, Catania

Setup for ⁷Li/⁷Be+ α

- Thick target method with inverse kinematics ... An efficient method to measure excitation function.
 - ⁷Be beam is monitored by a PPAC (or an MCP detector).
 - * ⁷Be beam stops in a thick helium gas target (200 mmlong, 1.6 atm).
 - Recoiled α particles are detected by ΔE-E counter (10 μm and 500 μm Si detectors) at forward angle.

 Nal array for γ-ray measurement (to identify inelastic events).

⁷Be+ α Excitation functions

• 4 excitation functions... new information on resonant widths, spin, and parity. *H. Yamaguchi et al., PRC (2013).*

NN2015, Catania

Resonant contribution to ⁷Be(α,γ)

 Small but not negligible contribution compared to lower-lying states (~10%).

NN2015, Catania

Direct measurement of (α , p) reactions

¹¹C(α,p)@CRIB [S. Hayakawa et al., in preparation]

GEM-MSTPC (active target)
 Constructed and used for several
 (α, p) reaction studies.

NN2015, Catania

- Acts as a He target and a detector (TPC) simultaneously GEM with "backgammon" type readout pad.
- 3-dimentional trajectory and energy loss can be measured \Rightarrow Good event identification.

The ¹⁸F(p, α) project

- ¹⁸F(p,α)... an astrophysical reaction important in novae, and other high-T environments.
- Measurement with Trojan Horse Method performed in 2008 ...The first THM+RI beam experiment.
- The RI Beam at CRIB (after development): Primary beam: ¹⁸O ⁸⁺, 4.5-5 MeVA
 Production target: H₂
 Production reaction: ¹⁸O(p,n)¹⁸F

 Purity nearly 100%
 Intensity > 5 x 10⁵ pps

A NOVA MICKEY MOUSE PICTURE AND ${}^{18}F(p,\alpha){}^{15}O$

Observed γ - rays come from e tet et come from ¹⁸F decay mostly At novae temperatures (100-500 keV) ¹⁸F can be mainly destroyed by $18F(p,\alpha)^{15}O$

How the setup looks like in reality NN2015, Catania

Q-VALUE SPECTRUM

Assuming that a Quasi-free mechanism is dominant one can use the (PW)IA:

THM(=barriers free) CROSS SECTION

S(E) from THM 8 keV 3/2+

interference between resonances dominates in the region of interest, resulting in four groups of *S*-factor curves. The upper and lower curves of each group are shown in the figure. The legend gives the assumed phase, for the 8-, 38-, and 665 keV resonances, respectively, for each pair of curves. Also plotted are the measured *S* factors from this work, those from previously published data [4,10,12,19], and the proposed contribution from 1/2⁺ states predicted in Ref. [6] **C.E. Beer, Phys. Rev. C 83,**

042801(R) (2011)

THM data

C.E. Beer, Phys. Rev. C 83, 042801(R) (2011) Smeared to THM resolution

¹⁶N beta-delayed alpha decay

• ${}^{16}N \rightarrow {}^{16}O^* \rightarrow {}^{12}C + \alpha \text{ decay}...\text{carrying information of } {}^{12}C(\alpha,\gamma)$ reaction cross section (E1 component) at low energy.

- Tang et al. (Argonne)...measurement with 2 ionization chambers. (Low-energy events cannot be detected.)
- Using the active target for decay measurement...sensitivity at low-energy events
- Experiment at CRIB proposed and performed under a collaboration with INFN-LNS group (S. Cherubini et al.) NN2015, Catania

Performed measurement

Measurement at CRIB performed in Sep. 2013.

- RI Beam…¹⁶N
 - Beam pulsing (on-off) operation by 50-ms interval.

 \bullet 1-4 x 10⁵ pps after the pulsing, purity 40-80%.

- ♦ 30-MeV beam injected into the TPC, stopped in the middle of it.
- Total 16 days of beamtime, about 2 weeks of data accumulation.
- Branching ratio of α -decay...~10⁻⁵

 \Rightarrow a few decay events /sec.

Typical event (preliminary)

- Signals observed in several neighboring channels...candidate of α -decay event.
- Event selection by energy and tracking information.
- Analysis in progress.

NN2015, Catania

Summary

- CRIB is a low-energy RI beam facility in RIBF operated by CNS, University of Tokyo, providing RI beams of good intensity and purity.
- Manpower...Minimum to carry out experiments. We are making experiments in a worldwide collaboration with external groups.
- GEM-MSTPC
 - Has been used in several (α,p) measurements, and recently also for alpha decay measurement of ¹⁶N.
- Resonant elastic scattering
 - ⁷Li+α,⁷Be+α...strong resonances were observed. The "thick target method with inverse kinematics" could be applied to many nuclides. We can study astrophysical reactions and alpha-cluster structures.
- Trojan Horse experiments
 - ¹⁸F+d...the first RI beam+THM experiment
 - More to come.
- We welcome new users and new ideas!