

High-pT particle production in p-Pb collisions with ALICE at the LHC

Alberica Toia

Goethe University Frankfurt & GSI on behalf of the ALICE Collaboration

Nucleus-Nucleus 2015 Catania (Italy)

Pb-Pb: Signs of Collectivity

- Search for medium effects with
 - nuclear modification factors R_{AA}
 - strength of collective
 - phenomena (mean free path)

 $\frac{Yield in A+A}{N_{binary} \times Yield in p+p}$

Collective behavior close to ideal fluid behavior described by hydrodynamics

Large radiative energy loss in the medium Hints of mass hierarchy

Nucleus-Nucleus 2015

Proton-Nucleus Collisions

 In high-energy nucleus-nucleus collisions, large energy density (ε >> 1 GeV/fm³) Over large volume (>> 1000 fm³)

high temperature high energy density low baryonic density

 In high-energy proton-nucleus collisions, large energy densities (?) in a <u>small volume</u>

<--> p 208Pb - Control experiment:

- calibrate the initial-modification of hard probes (jets, heavy quarks, quarkonia),
- single-out final-state effects (hot medium) in Pb-Pb
- Explore **new territory in QCD** (low-x):
 - high gluon density in the initial state (CGC, gluon-shadowing?)
 - potentially, high energy density in the final
 - state, but in a small volume \rightarrow surprises?

Initial State

Explore new territory in QCD (low-x): - No data in the (x,Q^2) region of LHC \rightarrow Parton Distribution Functions: large uncertainties - Large gluon density for p and even more for Pb GLUON SHADOWING Ratio nuclear-nucleon PDF: shadowing/anti-shadowing from constructive/destructive interference of the amplitudes due to multiple scattering

Nucleus-Nucleus 2015

Gluon Shadowing increases with decreasing x and Q² some of the partons are obscured by others

in front of them → decrease of the scattering amplitude relative to what is expected from incoherent independent scattering

Initial State

Explore new territory in QCD (low-x): - No data in the (x,Q^2) region of LHC \rightarrow Parton Distribution Functions: large uncertainties - Large gluon density for p and even more for Pb COLOR GLASS CONDENSATE parton evolution proceeds via soft collinear gluon emission

At a characteristic momentum scale (saturation scale) gluon density is large enough that parton evolution becomes non-linear \rightarrow parton recombination. Gluons act as frozen color sources (CGC) Scale depends on x and A \rightarrow geometric scaling

Nucleus-Nucleus 2015

Multiplicity in pA

RAPIDITY DISTRIBUTION

- Data favors models that incorporate shadowing
- Saturation models predict much steeper η -dependence which is no seen in the data

ALICE Coll. Phys. Rev. Lett. 110, 032301 (2013) Nucleus-Nucleus 2015

ENERGY DEPENDENCE

- ~15%below NSD pp collisions
- Similar to inelastic pp collisions
- 84% higher than in d–Au collisions at $\sqrt{s_{_{\rm NN}}} = 0.2$ TeV.

- $R_{nPh} \sim 1 \rightarrow no nuclear effects in pPb$
- \rightarrow suppression in PbPb is a final state effect

ALICE Coll. Phys. Rev. Lett. 110, 082302 (2013)

R_{pPb} ~1 → no nuclear effects in pPb
 → suppression in PbPb is a final state effect

ALICEColl. Phys. Lett. B 741 (2015) 38-50

Nucleus-Nucleus 2015

Heavy Flavor R_{pA}

ALICE Coll. Phys. Rev. Lett. 113 (2014) 232301

Jet quenching vs. "cold" matter / EW observables

...provide experimental demonstration that suppression = parton energy loss

Nucleus-Nucleus 2015

Flow, Cronin or saturation?

To distinguish scenarios look differentially!

LHC vs. RHIC data

Cronin effect: "re-distribution" of low-pT hadrons at higher pT due to multiple (parton) scattering larger at RHIC
First observed by Cronin in PRD 11 (1975) 3105
→ Multiple soft scatterings in IS prior to hard scatter (arXiv:hep-ph/0212148)

• flow: blue-shift of spectra larger at LHC

 saturation: depletion of spectra at low pT larger at LHC

Mean p_{T}

pp: high-mult through multiple parton interactions BUT incoherent production → same <pt> → Color reconnection: strings from independent parton interactions do not independently produce hadrons, but fuse before hadronization → fewer, but more energetic, hadrons Sign of collectivity?

pPb: features of both less saturation than in PbPb \rightarrow higher <pt>Sign of collectivity?

PbPb: high-mult from superposition of parton interactions, collective flow
 → moderate
 ^N increase of <pt>

R_{pA} for particle species

At intermediate pT (Cronin region): Indication of mass ordering – No enhancement for pions and kaons – Pronounced peak for protons – Even stronger for cascades

Particle species dependence points to relevance of final state effects

Flow of Particles

Quantify the azimuthal modulation in terms of second order Fourier harmonics v2

Mass ordering of v2 Pb-Pb interpretation:

- v2 arises from initial anisotropy of local energy density
- Mass ordering arises from the interactions with the medium and their dependence on the mass of the hadrons
- → signs of collectivity? Radial and elliptic flow? Nucleus-Nucleus 2015 Alberica Toia

Pb-Pb

EPOS 3.074: full hydrodynamics Werner et al., arXiv:1307.4379

Double Ridge

p-Pb \ s_{NN} = 5.02 TeV

60-100%

 $2 < p_{T,trig} < 4 \text{ GeV}/c$

 $1 < p_{\text{Tassoc}} < 2 \text{ GeV}/c$

PLB 719 (2013),29-41

long range correlation:

Double (near+away side) ridge structure emerging when subtracting per-trigger yield of low (60-100%) from high-multiplicity (0-20%) events.

 $rac{1}{N_{ ext{trig}}}rac{d^2N_{ ext{assoc}}}{d\Delta\eta d\Delta\phi} (ext{rad}^{-1})$

0.6

0.4

2

 $d_{\mathcal{D}}$

Near and away side nearly identical independent of mult. \rightarrow common underlying

→ common underrying physics?

ALICEColl. PLB 719 (2013), pp. 29-41 Nucleus-Nucleus 2015

 $\frac{1}{\Delta \varphi} \frac{2}{(rad)}$

0

-2 -1

Event class

Geometry dependence: Centralitv

- Centrality: classification of collision geometry based on a measured observable
- Impact parameter b controls <Ncoll>
 - for small systems b weakly correlated with Npart

STANDARD CENTRALITY

Centrality estimator related via a Glauber model to Ncoll

- description of the observable through a model
- conditional probability P(M | Ncoll)
- classify events as % of cross-section
- <Ncoll> in each centrality bin

- 1) Verify the connection of the measurement to collision geometry:
- correlating observables from kinematic regions that are casually disconnected after collision
- comparing Glauber MC and data for a known process

2) Demonstrate the consistency of the approach:

check if the centrality selection could induce a bias in the geometry parameters

selection in a system with large relative fluctuations can induce a bias
need to identify the physics origin of the bias to correct centrality dependent measurements

Glauber-MC

p-Pb √s_{NN} = 5.02 TeV

10

5

10⁻³

10⁻⁴

10⁻⁵

15

b (fm)

Npai

ALICE Coll. PRC 91 (2015) 064905

Nucleus-Nucleus 2015

Biases in pA

- Multiplicity bias: fluctuations sizable \rightarrow centrality selection based on multiplicity may select a sample on NN collisions biased w.r.t. a sample defined by cuts on b
- MC generators: multiplicity fluctuations are due to fluctuations in MPIs
 - → number of hard scatterings per NN collision
 - $< n_{hard} > = \sigma_{hard} * T_{NN}(b_{NN})$
 - \rightarrow bias in mult \sim bias in hard scattering
- **Jet-veto:** multiplicity range in peripheral events represent an effective veto on hard processes

Geometry bias: Mean nucleon-nucleon impact parameter (b_{MM}) increases in peripheral collisions

 \rightarrow reduced number of MPI for peripheral events

ALICE Coll. PRC 91 (2015) 064905 Alberica Toia

Deviations from binary scaling

Selecting events according to **multiplicity leads to a bias** \rightarrow Expected deviations from binary scaling at high pT

higher (lower) <mult/source> in central (peripheral) events

- Central: enhanced yield \rightarrow RpA>1
- Peripheral (lower yield $\rightarrow RpA < 1$)

 \rightarrow large spread **NOT** related to nuclear effects!

The bias decreases increasing Δy between the measurement and centrality estimator

Jet-veto effect in most peripheral bin with a significant negative slope vs pT

G-PYTHIA: Incoherent superposition of N-N PYTHIA collisions coupled to Glauber MC reproduces main features ALICE Coll. PRC 91 (2015) 064905

Nucleus-Nucleus 2015

The ALICE approach

1) assumption: an event selection based on ZN energy does not induce any bias on bulk particle production at midrapidity 2) assumption: a) Mid-rap dN/dŋ scales with N b)Yield at high-p_T scales with N coll c)Pb-side dN/dŋ scales with N part b)Yield at high-p_T scales with N coll c)Pb-side dN/dŋ scales with N part

(= N_{coll} in pA)

$$\langle N_{\text{coll}} \rangle_{i}^{\text{high}-\text{p}_{\text{T}}} = \langle N_{\text{coll}} \rangle_{MB} \cdot \frac{\langle S \rangle_{i}}{\langle S \rangle_{MB}}$$
$$\langle N_{\text{coll}} \rangle_{i}^{\text{Pb-side}} = \langle N_{\text{coll}} \rangle_{MB} \cdot \frac{\langle S \rangle_{i}}{\langle S \rangle_{MB}}$$

All values within at most 10%
→ consistency of assumptions
This does not yet prove the validity of any (or all) of these assumptions 2a),b),c)

ALICE Coll. PRC 91 (2015) 064905

Consistency Check

• Measurement of Ncoll in separated y regions to establish their relation to centrality: ZN vs. V0A

- P(Ncoll|centZNA) from SNM+Glauber fit convolved with NBD from NBD+Glauber fit to MB VOA multiplicity - Unfolding: find the input π (Ncoll) distribution that convolved with NBD MB fits the VOA distribution from data in ZNA classes

does not work for biased centrality selection (CL1)

- Ncoll distribution folded with NBD agrees with measured signal distributions
- \rightarrow ZNA unbiased centrality selection

dN/dŋ at midrapidity

- for V0A (Glauber) steeper than linear increase in Npart
- for V0A (Glauber-Gribov) linear scaling with Npart apart from the peripheral point
- ZN centrality + assumptions on scaling for high-pT and Pb-fragmentation side yields show linear scaling with Npart within 10% and the peripheral bin agrees with pp data

ALICE Coll. PRC 91 (2015) 064905

Nuclear modification factor

- Nuclear modification factors consistent with unity at high pT for whole centrality range
- intermediate-pT enhancement ("Cronin") increases with centrality
- Results from the 2 assumptions used here are in agreement within uncertainties
- The geometry bias effect is still present in the most peripheral bin

Nucleus-Nucleus 2015

... and many more pA results vs. centrality...

Conclusions

- pA physics program: As control experiment: baseline measurements provide clear proof that effects in Pb–Pb collisions are genuine hot deconfined QCD matter effects related to parton energy loss
- Centrality dependence of measured particle production: dN/dη at midrapidity scales with Npart high-pT particle production follows binary scaling
 - And also: Jets, Charm
- However both initial state and final state play a role
 - Hydrodynamic flow in the final state: a "medium" → collectivity in pA?
 - Initial energy density in p-Pb comparable to Pb-Pb
 - p-Pb small and short-lived: able to thermalize?
 - Jet quenching would need larger path length and longer time
 - Multi-gluon processes from saturated initial-state (Color Glass Condensate)

Night wraps the sky in tribute from the stars. (Vladimir Mayakovsky, 1930)