Nucleus Nucleus 2015 Catania 21-26 Giugno 2015

J/ψ production in heavy-ion collisions and related items

Roberta Arnaldi INFN Torino

Outlook:

charmonium production in pA and AA collisions from

$\mathbf{SPS} \rightarrow \mathbf{RHIC} \rightarrow \mathbf{LHC}$

Quarkonium in a hot medium

PHYS. LETT. B, in press

BROOKHAVEN NATIONAL LABORATORY

June 1986

BNL-38344

J/# SUPPRESSION BY QUARK-GLUON PLASMA FORMATION

T. Matsui Center for Theoretical Physics Laboratory for Nuclear Science Massachusetts Institute of Technology Cambridge, MA 02139, USA

and

H. Satz Fakultät für Physik Universität Bielefeld, D-48 Bielefeld, F.R. Germany and Physics Department Brookhaven National Laboratory, Upton, NY 11973, USA

ABSTRACT

If high energy heavy ion collisions lead to the formation of a hot quarkgluon plasma, then colour screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region. To study this effect, we compare the temperature dependence of the screening radius, as obtained from lattice QCD, with the J/ψ radius calculated in charmonium models. The feasibility to detect this effect clearly in the dilepton mass spectrum is examined. We conclude that J/ψ suppression in nuclear collisions should provide an unambiguous signature of quark-gluon plasma formation.

This manuscript has been authored under contract number DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or

Sequential melting

Differences in the binding energies of the quarkonium states lead to a sequential melting of the states with increasing temperature

Quarkonium is a thermometer of the initial QGP temperature

Quarkonium in a hot medium

(Re)combination

Increasing the collision energy the cc pair multiplicity increases

Central AA collisions	SPS	RHIC	LHC
	20 GeV	200 GeV	2.76TeV
N _{ccbar} /event	~0.2	~10	~75

enhanced quarkonia production via (re)combination at hadronization or during QGP stage

Cold Matter Effects

Cold Matter Effects (CNM)

on top of mechanisms related to hot matter, other effects have to be taken into account to interpret quarkonium A-A results:

> nuclear parton shadowing energy loss cc in medium break-up

investigated through p-A collisions

Nuclear modification factor

Medium effects are quantified comparing the quarkonium yield in AA with the pp one, scaled by a geometrical factor (from Glauber model)

$$R_{AA}^{J/\psi} = rac{Y_{AA}^{J/\psi}}{\langle T_{AA}
angle \sigma_{pp}^{J/\psi}}$$

$$R_{AA} = 1 \rightarrow$$
 no medium effects
 $R_{AA} \neq 1 \rightarrow$ hot/cold matter effects

Quarkonium studies in Heavy-Ion collisions

- Quarkonium as a probe of the hot medium created in the collision (QGP)
- Suppression vs (re)combination

- Investigation of cold nuclear matter effects (shadowing, energy loss...)
- Crucial tool to disentangle genuine
 QGP effect is AA collisions

- Reference process to understand behaviour in pA, AA collisions
- Useful to investigate production mechanisms (NRQCD, CEM models...)

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
	NA50	Pb-Pb	17	1995-2003
		p-A	27-29	
	NA60	In-In	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		p-Au, d-Au	200	
LHC ALICE/ATLAS/ CMS/LHCb		Pb-Pb	2760	2010-2012
	p-Pb	5020	2013	

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
	NA50	Pb-Pb	17	1995-2003
		p-A	<mark>2</mark> ~30 ye	ars long story
	NA60	In-In	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		d-Au	200	
LHC ALICE/ATLAS/ CMS/LHCb	Pb-Pb	2760	2010-2011	
	p-Pb	5020	2013	

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
	NA50	Pb-Pb	17	1995-2003
		ore than a factor 100 increase in	27-29	
	NA60	energy	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		d-Au	200	
LHC ALICE/ATLAS/ CMS/LHCb		Pb-Pb	2760	2010-2011
		p-Pb	5020	2013

Facility	Experiment	System	√s _{nn} (GeV)	Data taking
SPS	NA38	S-U	19	1986-1992
	NA50	Pb-Pb	17	1995-2003
		Fixed targe	t experiment	S
	NA60	In-In	17	2003-2004
		p-A	17-27	
RHIC	PHENIX/STAR	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
		Collider exp	periments	
LHC	ALICE/ATLAS/	Pb-Pb	2760	2010-2012
	CMS/LHCb	p-Pb	5020	2013

Facility	Experimer	nt	System	√s _{nn} (GeV)	Data taking
SPS	NA38		S-U	19	1986-1992
For all ex	For all experiments, the AA program is followed by the pA one		Pb-Pb	17	1995-2003
the AA p			p-A	27-29	
			In-In	17	2003-2004
			p-A	17-27	
RHIC	PHENIX/STA	٩R	Au-Au, Cu-Cu, Cu-Au, U-U	200, 193, 62, 39	2000-2015
			d-Au	200	
LHC ALICE/ATLAS/		Pb-Pb	2760	2010-2011	
	CMS/LHCb		p-Pb	5020	2013

Quarkonium resonances

First J/ψ measurements at low energy

SPS:

first evidence of anomalous suppression (i.e. beyond CNM expectations) in Pb-Pb \sim 30% suppression compatible with ψ (2S) and χ_c decays

RHIC:

suppression, strongly rapidity dependent, in Au-Au at \sqrt{s} = 200 GeV Stronger suppression at forward y (not expected if suppression increases with energy density, larger at mid-y)

RHIC (PHENIX,STAR) √s_{NN} =39,62.4,200GeV

From SPS and RHIC results to LHC

Puzzles from SPS and RHIC

- **RHIC:** stronger suppression at forward rapidities
- **SPS vs. RHIC**: similar *R*_{AA} pattern versus centrality
 - Hint for (re)combination at RHIC?

No final theoretical explanation

Decisive inputs expected from LHC results, having access to:

higher energies

stronger suppression?

more charm

- Iarger (re)combination? more bottom
- $\rightarrow \Upsilon$ can be investigated

Quarkonium at LHC

Complementary quarkonium results from LHC experiments!

15

$J/\psi R_{AA}$ vs centrality: ALICE vs PHENIX

Centrality dependence of the J/ ψ inclusive R_{AA} studied by ALICE in both central and forward rapidities down to zero p_T

ALICE Coll. PLB 734 (2014) 314

ALICE results:

 \rightarrow clear J/ ψ suppression with almost no centrality dependence for N_{part} >100

Comparison with PHENIX:

 \rightarrow ALICE results show weaker centrality dependence and smaller suppression for central events

behaviour expected in a (re)combination scenario

$J/\psi R_{AA}$ vs centrality: ALICE vs PHENIX

Comparison to theory calculations:

Models including a large fraction (> 50% in central collisions) of J/ψ produced from (re)combination or models with all J/ψ produced at hadronization provide a reasonable description of ALICE results

Still rather large theory uncertainties: models will benefit from a precise measurement of σ_{cc} and from cold nuclear matter evaluation

Low p_T J/ ψ : ALICE & PHENIX

J/ ψ production via (re)combination should be more important at low transverse momentum (p_T region accessible by ALICE)

Different suppression for low and high $p_{\rm T}$ J/ ψ

→ Smaller R_{AA} for high $p_T J/\psi$

Striking difference, at low p_{T} , between PHENIX and ALICE patterns

Low $p_T J/\psi$: ALICE & PHENIX

J/ ψ production via (re)combination should be more important at low transverse momentum (p_T region accessible by ALICE)

Different suppression for low and high $p_{\rm T}$ J/ ψ

→ Smaller R_{AA} for high $p_T J/\psi$

Models: ~50% of low- p_T J/ ψ are produced via (re)combination, while at high p_T the contribution is negligible 2

High- p_T J/ ψ : CMS & STAR

At LHC high $p_T J/\psi$ have been investigated by CMS

Limits in the CMS low- $p_T J/\psi$ acceptance since muons need to overcome the magnetic field and energy loss in the absorber:

- mid-y: *p*_T>6.5 GeV/c
- forward y: $p_T > 3 \text{ GeV/c}$

Opposite behavior when compared to ALICE low- $p_{\rm T}$ results

Suppression is stronger at LHC energy (by a factor ~3 compared to RHIC for central events)

High- p_T J/ ψ : CMS & STAR

At LHC high $p_{\rm T}$ J/ ψ have been investigated by CMS

Limits in the CMS low- $p_T J/\psi$ acceptance since muons need to overcome the magnetic field and energy loss in the absorber:

- mid-y: *p*_T>6.5 GeV/c
- forward y: $p_T > 3$ GeV/c

Opposite behavior when compared to ALICE low- p_{T} results

Suppression is stronger at LHC energy (by a factor ~3 compared to RHIC for central events)

negligible (re)generation effects expected at high p_T

J/ψ flow

The contribution of J/ψ from (re)combination should lead to a significant elliptic flow signal at LHC energy

Hint for J/ψ flow at LHC, contrary to $v_2 \sim 0$ observed at RHIC!

- ALICE: qualitative agreement with transport models including regeneration
 - loss?

CMS: path-length dependence of energy

J/ψ in p-Pb collisions

 J/ψ production in modified also in pA because of CNM effects: $\rightarrow R_{pA}$ decreases towards forward y

Theoretical predictions: reasonable agreement with

- shadowing calculations and models including coherent parton energy loss
- CGC description seems not to be favoured

p-Pb: role of CNM effects on J/ψ

$R_{pA} p_T$ dependence in 3 y ranges:

- Backward-y: negligible p_T dependence, R_{pA} compatible with unity
- Mid-y: small p_T dependence, $R_{pA} \sim 1$ for $p_T > 3$ GeV/c
- Forward-y: R_{pA} increases with p_T

Comparison with theoretical models:

fair agreements with models based on shadowing + energy loss (except at forward-y and low p_T)

26

J/ψ versus event activity

At forward-y, strong J/ψ Q_{pA} decrease from low to high event activity
 At backward-y, Q_{pA} consistent with unity, with a feeble event activity dependence

CNM effects from pPb to PbPb

Once CNM effects are measured in pA, what can we learn on J/ψ production in PbPb?

Hypothesis: • $2 \rightarrow 1$ kinematics for J/ψ production

- CNM effects (dominated by shadowing) factorize in p-A
- CNM obtained as $R_{pA} \times R_{Ap} (R_{pA}^2)$, similar x-coverage as PbPb

Sizeable p_T dependent suppression still visible \rightarrow CNM effects not enough to explain AA data at high p_T

we get rid of CNM effects, by doing the ratio AA / pA

CNM effects from pPb to PbPb

Once CNM effects are measured in pA, what can we learn on J/ψ production in PbPb?

Hypothesis: • $2 \rightarrow 1$ kinematics for J/ψ production

- CNM effects (dominated by shadowing) factorize in p-A
- CNM obtained as $R_{pA} \times R_{Ap} (R_{pA}^2)$, similar x-coverage as PbPb

Sizeable p_T dependent suppression still visible \rightarrow CNM effects not enough to explain AA data at high p_T

we get rid of CNM effects, by doing the ratio AA / pA

$\psi(2S)$ vs J/ ψ in p-A collisions

Being a more weakly bound state than the J/ ψ , the ψ (2S) is an interesting probe to investigate charmonium behaviour in the medium

A strong decrease of the $\psi(2S)$ production in p-Pb, relative to J/ψ , is observed with respect to the pp measurement $(2.5 < y_{cms} < 4, \sqrt{s} = 7 \text{TeV})$

Similar effect seen by PHENIX in d-Au at $\sqrt{s_{NN}}$ =200 GeV

same initial state CNM effects (shadowing & coherent energy loss) for J/ψ and $\psi(2S)$

theoretical predictions in disagreement with $\psi(2S)$ result

$\psi(2S)$ vs J/ ψ in p-A collisions

Can the stronger $\psi(2S)$ suppression be due to break-up of the fully formed resonance in CNM?

possible if:	
formation $(\tau_f) <$	crossing time (τ_c)
forward-y:	backward-y:
τ _c ~10 ⁻⁴ fm/c	$\tau_c \sim 10^{-1} \text{ fm/c}$
while $\tau_f \sim 0.05$ -0	0.15 fm/c

forward-*y***:** break-up effects excluded

backward-y:

Final state effects related to the (hadronic) medium created in the p-Pb collisions?

$\psi(2S)$ vs J/ ψ in p-A collisions

Final state effects related to the (hadronic) medium created in the p-Pb collisions?

Charmonium interaction with comoving particles:

- Comovers dissociation affects more strongly the loosely bound $\psi(2S)$ than the J/ ψ
- Comovers density larger at backward rapidity

E. Ferreiro arXiv:1411.0549

J/ψ in heavy ion collisions: where are we?

Large wealth of results at LHC complementing SPS and RHIC measurements!

Two main mechanisms at play in AA collisions

- 1. Suppression in a deconfined medium
- 2. (charmonium) re-combination at high \sqrt{s} and low p_T

Qualitatively explanation of the main features of the results

In p-A collisions:

- interplay of shadowing and coherent energy loss can satisfactorily describe the J/ ψ results
- loosely bound $\psi(2S)$ is likely influenced by the hadronic final state

Results from LHC Run2 eagerly awaited!

- Energy increase ($\sqrt{s_{NN}}=5$ TeV) will allow for confirmation of the (re) combination role at low p_T
- Statistics increase will allow to sharpen Run-I results

Backup slides

p-Pb: role of CNM effects on J/ψ

ATLAS and LHCb measure the forward to backward cross section ratio, R_{FB} , for

- Prompt J/ψ
- Non prompt J/ψ from B decay
- Similar shadowing/saturation expected for quarkonia and b quarks

ATLAS/LHCb results indicate a strong kinematic dependence of CNM for both charmonium and b quark production

LOW ENERGY RESULTS: $\psi(2S)$ FROM SPS & RHIC

$\psi(2S)/J/\psi$ IN PB-PB @LHC

Being a more weakly bound state than the J/ψ , the $\psi(2S)$ is another interesting probe to investigate charmonium behaviour in the medium The $\psi(2S)$ yield is compared to the J/ψ one in Pb-Pb and in pp

DISSOCIATION TEMPERATURES

arXiv:1404.2246

Quarkonium production and decay

J/ψ production

Quarkonium production can proceed:

- directly in the interaction of the initial partons
- via the decay of heavier hadrons (feed-down)

For J/ψ (LHC energies) the contributing mechanisms are:

J/ψ decay

 J/ψ can be studied through its decays:

 $\mathbf{J}/\psi \rightarrow \mu^+\mu^- \quad \mathbf{J}/\psi \rightarrow \mathbf{e}^+\mathbf{e}^-$

(~6% branching ratio)

Feed

down

30%

B decay

Direct

60%

J/ψ vs D in AA collisions

Open charm should be a very good reference to study J/ ψ suppression (a' la Satz)

Interesting comparison between ALICE and CMS J/ ψ compared to D

Caveat:

complicate to compare J/ ψ and D R_{AA} at LHC because of restricted kinematic regions.

Low p_{T} D not accessible for the moment

Different trend observed at low p_T at RHIC. At high p_T trend is similar to the LHC one

CMS: high $p_T J/\psi$

\rightarrow The high p_{T} region can be investigated by CMS!

Comparison Υ and J/ ψ

Similar R_{AA} for low p_T inclusive J/ψ and $\Upsilon(1S)$

Sequential suppression observed for prompt J/ ψ and $\Upsilon(nS)$ at high p_T

interplay of the competing mechanisms for J/ψ and Υ can be different and dependent on kinematics!

COMPARISON WITH THEORY

Stronger suppression at forward rapidity (ALICE) than at mid-rapidity (CMS)

Theory still meets difficulties in describing simultaneously the R_{AA} centrality and rapidity dependence (suppression slightly overestimated at forward-y, while better reproduced at mid-y)

$\psi(2S)/J/\psi \ln p-Pb$

A strong decrease of the $\psi(2S)$ production in p-Pb, relative to J/ ψ , is observed with respect to the pp measurement (2.5< y_{cms} <4, \sqrt{s} =7TeV)

 $[\psi(2S)/J/\psi]_{pp}$ variation between ($\sqrt{s}=7$ TeV, 2.5<y<4) and ($\sqrt{s}=5.02$ TeV, 2.03<y<3.53 or -4.46<y<-2.96) based on CDF and LHCb data (~8% included in the systematic uncertainty)45

$\Upsilon(1S)$ PRODUCTION IN PB-PB COLLISIONS

LHC is the machine for studying bottomonium in AA collisions

Main features of bottomonium production wrt charmonia:

- no B hadron feed-down
- gluon shadowing effect are smaller
- (re)combination expected to be smaller
- theoretical predictions more robust due to the higher mass of b quark

with a drawback...smaller production cross-section

Clear suppression of Υ states in PbPb with respect to pp collisions 46

$\Upsilon(1S)$ PRODUCTION IN PB-PB COLLISIONS

47

Υ (1S) PRODUCTION IN p-Pb

ALICE: arXiv:1410.2234, accepted by PLB LHCb: JHEP 07(2014)094

Y(1S) measured at mid-y by CMS and at forward-y by both ALICE and LHCb

→ Compatible R_{pA} results within uncertainties (but LHCb systematically higher)

$\Upsilon(nS)/\Upsilon(1S)$ PRODUCTION IN p-Pb

Initial state effects similar for the three Y states

p-Pb vs pp @mid-y: different/stronger final states effects in p-Pb affecting the excited states

p-Pb vs PbPb @mid-y : even stronger suppression of excited states in PbPb

CMS HIN-13-003, JHEP 04 (2014) 103, PRL 109 (2012)

ALICE (and LHCb) observes:

r(2S)/r(1S) (ALICE) 2.03<y<3.53: 0.27±0.08±0.04 -4.46<y<-2.96: 0.26±0.09±0.04

Compatible with pp results 0.26±0.08 (ALICE, pp@7TeV)

CMS analyses the double ratio $[\Upsilon(2S)/\Upsilon(1S)]/[\Upsilon(nS)/\Upsilon(1S)]_{pp}$ and finds

0.83±0.05±0.05