Outline

- Motivation
- Three generations of experiments
- Experimental setup detection system and electronics
- Preliminary results
- Conclusions

Where is the limit of SHE?

Theory

- 1957: Scharff-Goldhaber suggested "magic island" around Z=126 and N=184
- 1966: A. Sobiczewski, F.A.
 Gareev, B.N. Kalinkin magic numbers: Z=114, N=184
- 1966: W. D. Myers, W. J.
 Świątecki another magic numbers: Z=126, N=184

Experiment

- LBNL, Berkeley: Z=106
- GSI, Dramstadt: Z=107, 108, 109, 110, 111, 112
- JINR, Dubna: Z=104, 105, 106, 107, 113, 114, 115, 116, 117, 118
- RIKEN, Tokyo : Z=113

Classical approach to the SHE creation

1950s: beams heavier then alpha partciles

to known nuclide

8.34 Me\

Date: 09-Feb-19

Hot fusion (Cf, Pu actinide targets)

- E*=30-50 MeV¹)
- 3-5 neutrons emitted before SHE reaches ground state
- e.g.: ${}^{48}Ca + {}^{249}Cf \rightarrow {}^{297}118 \rightarrow {}^{294}118 + 3n$

Cold fusion (Pb, Bi targets)

- E*=10-15 MeV^{2,3)}
- 1 neutrons emitted end SHE reaches ground state
- e.g.: ${}^{70}\text{Zn} + {}^{209}\text{Bi} \rightarrow {}^{279}\text{113} \rightarrow {}^{278}\text{113} + 1n$

Conclusion: carefull choice of collision energy and projectile target combination

- 1. Y. Oganessian et al., Phys. Rev. C74 (2006) 044602.
- 2. S. Hofmann et al., Z. Phys. A354 (1996) 229.
- 3. K. Morita et al., Journal of the Physical Society of Japan, 81 (2012) 103201

Cross section data and extrapolated values for cold fusion reactions (1n-evaporation channel) ¹⁾

 $\sigma_{\rm ER}$ =1.0 and 0.5 pico barn for production of Z=112¹, 118²).

Presently it is difficult to reach experimentally such low cross sections (limited by intensity of ion sources and rejection ratios of ER filters).
To synthesize neutron rich SHE elements, radioactive ion beams (RIB) facilities can be considered, but we are still very far from using such facilities to reach the neutron closed shell N=184 (due to too low cross section for the production of neutron-rich fragments by RIB).

Hofmann et al., Eur. Phys. J. A14 (2002) 147.
 Yu. Ts. Oganessian et al., Phys. Rev. C74 (2006) 044602.

Alternative reaction mechanism for Super and Hyper Heavy Elements (SHE/HHE) production

> Massive transfer (multi nucleon transfer) reactions between heavy projectile (Au) and heavy target nuclei (Th) while e.g. nuclei are orbiting.

Remarks for the mechanism:

- Here, in contrary to the complete fusion a spectrum of SHE will be wide (in Z and in velocity)
- A "classical" velocity filter can not be utilized
- ¹⁹⁷Au projectile can pickup large fragment of
 ²³²Th: Z_{SHE}≈45+79=124 ?

Let's Nature to select the most appropriate transfer to produce SHE Three generations of our experiments for SHE search. Cyclotron Institute, Texas A&M University, 2002 – up to now

Experiment was discontinued due to our idea has changed how to attack the problem.

Three generations of experiments ...

II. <u>Passive catcher experiments – a simple system</u>

Search for alpha emitting SHE through implantation and decay of recoiling reaction products on a downstream catcher foil.

Determine lifetimes from growth and decay observations in beam and out of beam

Observed alpha particle decay energy distributions, beam-ON(left) and beam-OFF (right). The backward wall of E- Δ E detectors detected signals of α particles with E_{α} >14 MeV. However, it was impossible to exclude

another emitters of α 's then SHE

Three generations of experiments ...

III. Active catcher experiments (starting 2012)

Z. Majka et al., Acta Phys. Pol. B, Vol. 45 No 2 (2014) 279.

Details of scintillator

	BC-418
Scintillation Properties	
Light Output, %Anthracene	67
Rise Time, ns	0.5
Decay Time (ns)	1.4
Pulse Width, FWHM, ns	1.2
Wavelength of Max. Emission, nm	391
Light Attenuation Length, cm*	NA**
Bulk Light Attenuation Length, cm	100
Atomic Composition	
No. H Atoms per cc (x10 ²²)	5.21
No. C Atoms per cc (x10 ²²)	4.74
Ratio H:C Atoms	1.100
No. of Electrons per cc (x10 ²³)	3.37

	General Technical Data –					
_	Base	Polyvinyltoluene				
_	Density [g/cc]	1.032				
	Expansion Coefficient (per°C,<67°C)	7.8X10 ⁻⁵				
)	Refractive index	1.58				
	Softening Point	70°C				
	Vapor Pressure	May be used in vacuum				
-	Solubility	Soluble in aromati solvents, chlorinated solvents, acetone, etc Unaffected by wate dilute acids, lowe alcohols, alkalis and pure silicone fluids o grease.				

Details of PMT

Figure 1: Typical Spectral Response

WAVELENGTH (nm)

nodo to	Anode Characteristics										
Cathode to Supply	Luminous			Dark Current	urront	Time Response		Operating			
			Gain	(After 30 min)		Rise Time	Transit Time	TTS	Ambient	Storage Temperature	Type No.
Voltage	Min.	Тур.	Тур.	Тур.	Max.	Тур.	Тур.	Тур.	remperature		
(V)	(A/Im)	(A/Im)		(nA)	(nA)	(ns)	(ns)	(ns)	(°C)	(°C)	
1000	100	400	2.0 × 10 ⁶	1	10			0.2	2 -80 to +50	-80 to +50	R9880U-01
	100	400		1	10						R9880U-04
	350	1000		10	100	0.57	27				R9880U-20
	80	210		1	10	0.57	2.7 0.2	0.2			R9880U-110
	80	210		1	10						R9880U-113
	100	270		1	10		í l				R9880U-210

Trigger generation

I. Conversion of PMT signals to fast logical ones (the most complicated part)

II. Convertion of RF signal (sinus) to negative logical one (rather standard procedure)

In this philosophy we use electronics instead of spectrometer to eliminate the beam

Trigger logic, event counter

Acquisition of Active Catcher

ACQ hardware

To record bitpattern, event counter:

FADC V1724 (Caen)

- 8 channels
- 100 Ms/s
- 100 MHz bandwith
- 10 or more µs acquisition window
- no dead time

To record pluse shape of PMT signals:

FADC V1742 (Caen)

- 32 channels
- 1-5 Gs/s
- 500 MHz bandwith
- 0.2-1 µs acquisition window

1 µs ACO window was used

• 110 μ s dead time

To transmit data to laptop:

Controller V1718 (Caen)

- 30 Mb/s data transfer rate
- VME Master
- VME Slave
- Cycles: RW, BLT, MBLT etc.
- Data width: D8, D16, D32, D64
- usb 2.0

Some photos and schematics of detection setup

 $8 \ge E - \Delta E$ beam

Active Catcher (AC)

 $E-\Delta E$ and AC mounted in the chamber

Front view of Active Catcher Electronics to produce trigger to ACQ, FADC

Setup summary:

- Concave shape of the AC wall
- Scintillators covered by thin Al foil
- 63 PMT modules
- 12 HV, one to 4 PMT modules

Preliminary results

Conclusions

- High energy α are seen in backwards E- Δ E detectors
- Very short scintillation pulses, 5 ns wide, are delivered by AC
- Active catcher events can be correlated with $E-\Delta E$ events
- Some problems in trigger production were encountered
- Further improvements in trigger electronics are in progress
- Such a set-up should be able to detect very short life-times (>10 ns)
- Next experiment is planned to be on August 2015

List of authors/collaborators

M. Barbui, N. Blando, G. Giuliani, K. Hagel, E-J. Kim, J.B. Natowitz, S. Wuenschel, H. Zheng Cyclotron Institute, Texas A&M University, USA

S. Kowalski, K. Schmidt *University of Silesia, Katowice, Poland*

M. Adamczyk, L. Dutka, Z. Majka, K. Pelczar, R. Płaneta, Z. Sosin, A. Wieloch, K. Zelga M. Smoluchowski Institute of Physics(SIP), Jagiellonian University, ul. Reymonta 4, 30-059, Kraków, Poland

Thank you for your attention!

View of a new campus of Faculty of Physics, Astronomy and Applied Computer Science of the Jagiellonian University Krakow