Particle emission at the proton drip-line

Marek Pfützner

Nuclear Physics Division
University of Warsaw
When the β decay energy is large, many exotic channels are available.

Blank and Borge, Progress in Part. Nucl. Phys. 60 (2008) 403
p drip-line is not a limit!

- The limit of „existence” beyond the proton drip-line is determined by emission of protons.

V.I. Goldanskii, Nucl. Phys. 19 (60) 482

NN2015, June 21-26, Catania, Italy
The current status of 2p emission

- Ground-state 2p radioactivity first observed in 45Fe. Later also in 54Zn, 48Ni and 19Mg.

- In lighter nuclei due to small Coulomb barrier 2p emission is fast, $T_{1/2}^{(19)}$Mg $= 4$ ps!

- Below 19Mg 2p are emitted from broad resonances, like 6Be.

True 2p emitters:
- expected/discussed
- established
- $p-p$ correlations determined

NN2015, June 21-26, Catania, Italy
Predictions of a simple model

\[\Omega_{2p} > 0 , \quad \Omega_{p} < 0.2 \Omega_{2p} \]

\[100 \text{ ns} < T_{1/2}^{2p} < 100 \text{ ms} \]
Between tellurium and lead

- Predictions of a simple model

- Sequential pp emission
 \[Q_{2p} > 0, \quad Q_p > 0.2 Q_{2p} \]
 \[100 \text{ ns} < T_{1/2}^{pp} < 100 \text{ ms} \]
 \[T_{pp} < 10 \cdot T_{\alpha} \]

- \[T_{pp} / 10 < T_{\alpha} < 10 \cdot T_{pp} \]
Combination of the CCD image with the PMT waveform allows to fully reconstruct the track in three dimensions.
Decays of 45Fe and 43Cr

NSCL/MSU, 2007

Pomorski et al., Phys. Rev. 83 (2011) 014306

Miernik et al., PRL 99 (07) 192501

β^3p 0.08%

β^2p

β^p

40Ca+$3p$

41Sc+$2p$

42Ti+p

43V

44Mn+p

45Fe

$2p$

β^+

IAS

43Cr+$2p$

$\approx 70\%$

$Q_{EC} = 18.7$ MeV

$T_{1/2} = 7$ ms

β^3p 11%

β^2p

β^p

43V+$2p$

42Ti+$3p$

45Mn

4^{4}Cr+p

β^4p

β^3p

β^2p

41Sc+$4p$

40Ti+p

β^p
p-p momentum correlations for 45Fe

- Proton-proton momentum correlations measured for 45Fe are complex and indicate a genuine 3-body phenomenon

- Good agreement with the 3-body model of Grigorenko et al.

Miernik et al., PRL 99 (07) 192501 Grigorenko et al., PLB 677 (2009) 30 MP, Karny, Grigorenko, Riisager, RMP 84 (12) 567

NN2015, June 21-26, Catania, Italy
Study of 48Ni

- NSCL/MSU, March 2011: 58Ni at 160 MeV/u + natNi \rightarrow 48Ni

Cross section: $\sigma = 150(50)$ fb!

10 events of 48Ni in 10 days

Pomorski et al., PRC 90 (14) 014311
2p decay of ^{48}Ni

- Four 2p events of ^{48}Ni
- $Q_{2\text{p}} = 1.29 (4) \text{ MeV}$

NN2015, June 21-26, Catania, Italy

Pomorski et al., PRC 90 (14) 014311
5542 identified ions of ^{44}Cr
4098 properly stopped
183 decays observed

$\Rightarrow b_p = 10(1)\%$

Dossat: $b_p = 14.0(9)\%$

A clear new line at 740(20) keV

$I_p = 0.6(2)\%$

103 reconstructed protons

No beta background!

<table>
<thead>
<tr>
<th></th>
<th>Dossat et al.</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p (keV)</td>
<td>I_p (%)</td>
<td>I_p (%)</td>
</tr>
<tr>
<td>1</td>
<td>908(11)</td>
<td>1.7(3)</td>
</tr>
<tr>
<td>2</td>
<td>1384(12)</td>
<td>1.1(3)</td>
</tr>
<tr>
<td>3</td>
<td>1741(15)</td>
<td>0.6(3)</td>
</tr>
</tbody>
</table>

Pomorski et al., PRC 90 (14) 014311
β^2p channel in 46Fe

One good event!

NN2015, June 21-26, Catania, Italy
Decay scheme of ^{48}Ni

$Q_{2p} = 1.29(4) \text{ MeV}$

$T_{1/2} = 2.1^{+1.4}_{-0.6} \text{ ms}$
β3p in 31Ar?

Decay modes of 31Ar and first observation of β-delayed three-proton radioactivity

D. Bazin, R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff
Centre d’Etudes Nucléaires de Bordeaux–Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

31Ar examined: New limit on the β-delayed three-proton branch

^{31}Ar at the FRS

- Experiment at GSI-FRS, August 2012
 "Search for two-proton decay of ^{30}Ar in flight by the tracking technique" by I. Mukha

- Many ^{31}Ar ions pass to the S4
 An idea: stop them in the OTPC and search for $\beta3p$ channel of ^{31}Ar

- With the beam of 10^{10} proj./spill we hoped for one ^{31}Ar atom/spill stopped.
 If spill every 4 s \Rightarrow 20 000/day
For effective stopping, the thickest gas mixture was chosen: 98% Ar + 2% N₂

We could not stop the beam upon arrival of a triggering ion.

Simulation of the range vs. hor. position

OTPC thickness: 50 mg/cm²

triggers

53 000 in five days

all ions during high sensitivity mode
Yes, $\beta 3p$ in ^{31}Ar!

- A new acquisition mode – a series of shorter expositions („movie”)

- Selection of events: in the first frame no other ions than well stopped ^{31}Ar present

21 000 events, all inspected individually by Ola Lis
13 events of β^3p decay of ^{31}Ar was observed

<table>
<thead>
<tr>
<th>Channel</th>
<th>Events</th>
<th>Branching [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>β^0p</td>
<td>5984</td>
<td>22.6(3)a</td>
</tr>
<tr>
<td>β^1p</td>
<td>13157</td>
<td>68.3(3)</td>
</tr>
<tr>
<td>β^2p</td>
<td>1729</td>
<td>9.0(2)</td>
</tr>
<tr>
<td>β^3p</td>
<td>13</td>
<td>0.07(2)</td>
</tr>
</tbody>
</table>

Only 3 cases of β^3p known:
- ^{45}Fe (Miernik et al., PRC76, 2007)
- ^{43}Cr (Pomorski et al., PRC83, 2011)
- ^{31}Ar (Lis et al., PRC, 2015)

All discovered with the OTPC!
β3p in 31Ar

- β3p decay channel of 31Ar confirmed by ISOLDE using Si Cube

Koldste et al., PRC 89 (2014) 064315

- The estimated β3p branching: 0.08(4)%
- The β3p transitions responsible for 30% of the total Gamow-Teller strength in 31Ar!
60Ge discovered at NSCL/MSU in 2004

A1900: 78Kr @ 140 MeV/u + Be

Lower cross section for the production of 60Ge than expected \(\Rightarrow\) does it indicate very short half-life?
Ten years after...

- Experiment at NSCL/MSU, September 2014

A1900 schematic

A1900: \(^{78}\text{Kr} \at 150 \text{ MeV/u} + \text{Be}\)

- 73 atoms of \(^{60}\text{Ge}\) identified!
 Delayed protons observed, analysis in progress

- Cross section measured for \(^{60,61,62}\text{Ge}\)

- Search for \(^{59}\text{Ge}\)
First observation of ^{59}Ge

Ciemny et al., submitted to PRC as RC

NN2015, June 21-26, Catania, Italy
Cross section for Ge isotopes

- Decay studies of 59Ge possible. Perhaps at RIKEN one can go even further...?

78Kr + Be $\rightarrow ^{A}$Ge

70Ge @ 70 A·MeV on natNi target produces 60Ge with larger cross section ($\times 2$)!

Blank et al., EPJ A 31 (2007) 267
Summary

• Beyond proton drip-line there is a large territory of beta decaying nuclei waiting for discovery (*terra incognita nova*).

• The OTPC detector is a very efficient tool to search for very rare multiparticle decays or to investigate particle decays obscured by beta background.

• Can provide precise branching ratios for β-delayed particle channels. Although the energy resolution is worse than for Si detectors, yields complementary data for low-energy particles.

• Non-trivial 3-body character of 2p decay of 45Fe discovered. 2p decay of 48Ni discovered.

• New decay channels, like β3p (45Fe, 43Cr, 31Ar), observed for the first time. β2p emission discovered in 46Fe based on one atom decay!

• New neutron-deficient isotope 59Ge identified, first decay data for 60Ge collected.
Thank you!