Particle emission at the proton drip-line

Marek Pfützner

Nuclear Physics Division University of Warsaw

β -delayed particle emission

> When the β decay energy is large, many exotic channels are available

Blank and Borge, Progress in Part. Nucl. Phys. 60 (2008) 403

p drip-line is not a limit!

> The limit of "existence" beyond the proton drip-line is determined by emission of protons

The current status of 2p emission

- Ground-state 2p radioactivity first observed in ⁴⁵Fe. Later also in ⁵⁴Zn, ⁴⁸Ni and ¹⁹Mg
- In lighter nuclei due to small Coulomb barrier 2p emission is fast,
- Below ¹⁹Mg 2p are emitted from broad resonances, like ⁶Be

^{66,67}Kr

Between tellurium and lead

TPC detector

Time projection chamber with optical readout (OTPC)

Combination of the CCD image with the PMT waveform allows to fully reconstruct the track in three dimensions

NN2015, June 21-26, Catania, Italy

p-p momentum correlations for ⁴⁵Fe

 Proton-proton momentum correlations measured for
⁴⁵Fe are complex and indicate a genuine 3-body phenomenon

 Good agreement with the 3-body model of Grigorenko et al.

Miernik et al., PRL 99 (07) 192501 Grigorenko et al., PLB 677 (2009) 30 MP, Karny, Grigorenko, Riisager, RMP 84 (12) 567

Study of ⁴⁸Ni

> NSCL/MSU, March 2011: ⁵⁸Ni at 160 MeV/u + ^{nat}Ni \rightarrow ⁴⁸Ni

Pomorski et al., PRC 90 (14) 014311

2p decay of ⁴⁸Ni

β -delayed protons from ⁴⁴Cr

NN2015, June 21-26, Catania, Italy

Decay scheme of ⁴⁸Ni

β 3p in ³¹Ar?

PHYSICAL REVIEW C

VOLUME 45, NUMBER 1

JANUARY 1992

Decay modes of ³¹Ar and first observation of β -delayed three-proton radioactivity

D. Bazin,* R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

PHYSICAL REVIEW C

VOLUME 59, NUMBER 4

APRIL 1999

³¹Ar examined: New limit on the β -delayed three-proton branch

H. O. U. Fynbo,¹ L. Axelsson,² J. Äystö,³ M. J. G. Borge,⁴ L. M. Fraile,⁴ A. Honk A. Jokinen,³ B. Jonson,² I. Martel,^{5,†} I. Mukha,^{1,‡} T. Nilsson,^{2,§} G. Nyman,² M. Oin M. H. Smedberg,² O. Tengblad,⁴ F. Wenander,² and the ISOLDE

³¹Ar at the FRS

> Experiment at GSI-FRS, August 2012

"Search for two-proton decay of ³⁰Ar in flight by the tracking technique" by I. Mukha

³¹Ar at the FRS

For effective stopping, the thickest gas mixture was chosen: 98% Ar + 2% N₂

Simulation of the range vs. hor. position

β 3p in ³¹Ar

Lis et al., PRC 91, 064309 (2015)

NN2015, June 21-26, Catania, Italy

13 events of β3p decay of ³¹Ar was observed

TABLE I. The total branching ratios for the observed decays of 31 Ar. The given uncertainties are statistical.

Channel	Events	Branching [%]
$\beta 0 p$	5984	$22.6(3)^a$
eta 1 p	13157	68.3(3)
eta 2p	1729	9.0(2)
eta 3p	13	0.07(2)

- Only 3 cases of β 3p known:
- ⁴⁵Fe (Miernik et al., PRC76, 2007)
- ⁴³Cr (Pomorski et al., PRC83, 2011)
- ³¹Ar (Lis et al., PRC, 2015)

All discovered with the OTPC!

β 3p in ³¹Ar

 β3p decay channel of ³¹Ar confirmed by ISOLDE

using Si Cube

Koldste et al., PRC 89 (2014) 064315

- → The estimated β 3p branching: 0.08(4)%
- → The β 3p transitions responsible for 30% of the total Gamow-Teller strength in ³¹Ar!

Ge isotopes at the proton drip-line

Stolz et al., Phys. Lett. B 627 (2005) 32

Lower cross section for the production of 60 Ge than expected \rightarrow does it indicate very short half-life?

Ten years after...

First observation of ⁵⁹Ge

Ciemny et al., submitted to PRC as RC

NN2015, June 21-26, Catania, Italy

Cross section for Ge isotopes

> Decay studies of ⁵⁹Ge possible. Perhaps at RIKEN one can go even further...?

Summary

- Beyond proton drip-line there is a large territory of beta decaying nuclei waiting for discovery (*terra incognita nova*)
- The OTPC detector is a very efficient tool to search for very rare multiparticle decays or to investigate particle decays obscured by beta background.
- Can provide precise branching ratios for β-delayed particle channels. Although the energy resolution is worse than for Si detectors, yields complementary data for low-energy particles.
- Non-trivial 3-body character of 2p decay of ⁴⁵Fe discovered. 2p decay of ⁴⁸Ni discovered.
- New decay channels, like β 3p (⁴⁵Fe, ⁴³Cr, ³¹Ar), observed for the first time. β 2p emission discovered in ⁴⁶Fe based on one atom decay!
- New neutron-deficient isotope ⁵⁹Ge identified, first decay data for ⁶⁰Ge collected.

NN2015, June 21-26, Catania, Italy