Present status of coupled-channels calculations for heavy-ion sub-barrier fusion reactions

Kouichi Hagino Tohoku University, Sendai, Japan

- 1. Introduction: H.I. sub-barrier fusion reactions
- 2. Coupled-channels approach
- 3. Coupling in the overlapping region: fusion hindrance
- 4. C.C. calculations with "beyond-mean-field" method
- 5. Role of non-collective excitations
- 6. Summary

Introduction: heavy-ion sub-barrier fusion reactions

Discovery of large sub-barrier enhancement of σ_{fus} (~ the late 70's)

potential model: V(r) + absorption

cf. seminal work:

R.G. Stokstad et al., PRL41('78) 465

Effect of nuclear deformation

¹⁵⁴Sm : a deformed nucleus with $\beta_2 \sim 0.3$

 154 Sm

Effect of nuclear deformation

Coupled-Channels method

- C.C. approach: a standard tool for sub-barrier fusion reactions cf. CCFULL (K.H., N. Rowley, A.T. Kruppa, CPC123 ('99) 143)
- ✓ Fusion barrier distribution (Rowley, Satchler, Stelson, PLB254('91))

Expt. ANU ('95)

K.H., N. Takigawa, PTP128 ('12) 1061

Coupled-channels calculations for sub-barrier fusion

Low-lying collective excitations only

- low-lying collective excitations
 - strong coupling to the g.s., strong isotope dep.
- non-collective excitations
- giant resonances \rightarrow high E_x , smooth isotope dep.

Coupling strengths (B(E\lambda)) and excitation energies (E_{\underline{x}})

identical to those in isolated nuclei

colliding nuclei: retain their identity during fusion

CN

≻ <u>Multiple o</u>	excitations to higher collective states	ΞΞΞ 2ε
 • multi-phonon excitations • higher members in the g.s. rotational band 		3 ——
<	simple harmonic oscillator/ rigid rotor	— 0
this tall.	The welt dity of each of these economy	

this talk: The validity of each of these assumptions?

Damping of collective motions?

a level scheme in an isolated nucleus

Fusion "hindrance" at deep sub-barrier energies

Adiabatic model for fusion hindrance (Ichikawa, Hagino, Iwamoto)

Semi-microscopic modeling of sub-barrier fusion

K.H. and J.M. Yao, PRC91('15)064606

multi-phonon excitations

Anharmonic vibrations

- Boson expansion
- Quasi-particle phonon model
- Shell model
- Interacting boson model
- Beyond-mean-field method

$$|JM\rangle = \int d\beta f_J(\beta) \hat{P}^J_{M0} |\Phi(\beta)\rangle$$

 MF + ang. mom. projection
 + particle number projection
 + generator coordinate method (GCM)

M. Bender, P.H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75 ('03) 121 J.M. Yao et al., PRC89 ('14) 054306

204

$$Q(2_1^+) = -10 + -6 \ e fm^2$$

Recent beyond-MF (MR-DFT) calculations for ⁵⁸Ni

K.H. and J.M. Yao, PRC91 ('15) 064606 J.M. Yao, M. Bender, and P.-H. Heenen, PRC91 ('15) 024301

✓ A large fragmentation of (2⁺ x 2⁺)_{J=0}
 ✓ A strong transition from 2₂⁺ to 0₂⁺

Semi-microscopic coupled-channels model for sub-barrier fusion

K.H. and J.M. Yao, PRC91 ('15) 064606

Role of non-collective excitations in fusion

the coupling strengths for non-collective excitations: poorly known —— random numbers (cf. random matrix model)

PRC80('09)054613

S. Yusa, K.H., and N. Rowley, PRC88('13)054621

Coupled-channels calculations for sub-barrier fusion

➢ Role of non-collective excitations

- ✓ difference between 20 Ne + 90 Zr and 20 Ne + 92 Zr
- \checkmark heavy systems relevant to SHE

➢ Damping of collective excitations

- \checkmark overlapping region
- \checkmark deep sub-barrier fusion hindrance

≻<u>C.C. calculations with MR-DFT method</u>

✓ anharmonicity

Summary

- \checkmark truncation of phonon states
- \checkmark octupole vibrations and tri-axiality: in progress

more flexibility:

- application to transitional nuclei
- a good guidance to the Q-moment of excited states