Constraining the key α-capture astrophysical reaction rates using the sub-Coulomb α-transfer reactions

Grigory Rogachev
Acknowledgements

✅ **Texas A&M University:** E. Koshchiy, E. Uberseder, A. Mukhamedzhanov, A. Kock.

✅ **Florida State University:** A.N. Kuchera*, M.L. Avila**, D. Santiago-Gonzales***, L.T. Baby, J. Belarge, K.W. Kemper.

* Present affiliation *NSCL, Michigan State University*
** Present affiliation *Argonne National Laboratory*
*** Present affiliation *Louisiana State University*
Outline

- ANC from Sub-Coulomb α-transfer reaction
- Benchmark measurements
- Cascade transitions in $^{12}\text{C}(\alpha,\gamma)$
- The neutron source for s-process - $^{13}\text{C}(\alpha,n)$

Background

- α capture reactions play important role in astrophysics.
- Direct measurements at Gamow energies are not possible because cross section is small due to Coulomb barrier.
- Extrapolations from direct measurements at higher energies often can poorly constrain the contribution from near α-threshold resonances
- Model independent indirect method to determine the contribution from near α-threshold resonances is highly desirable
Method

- Perform \(^6\text{Li},d\) (or \(^7\text{Li},t\)) \(\alpha\)-transfer reaction at sub-Coulomb energy for both the exit and entrance channels.
- Extract Asymptotic Normalization Coefficients (ANC) instead of SF factors.
- Sub-Coulomb energy eliminates dependance of the result on optical model parameters of the DWBA calculations.
- ANC does not depend on the shape of the form-factors or the number of nodes in the cluster wave function.
- There is a direct relation between contribution of the specific state to the \(\alpha\)-capture reaction and its ANC.

Benchmark experiment

Test the sub-Coulomb α-transfer using the known widths of the 1^- state in ^{20}Ne.

$^6\text{Li}(^{16}\text{O},d)^{20}\text{Ne}$

Benchmark experiment

- Use DWBA to extract the ANC for the 1^-
- Calculate its known width from measured ANC.

The known total width of the 1^- state at 5.79 MeV is $28(3)$ eV. The partial α width of the 1^- state determined from ANC is $29(6)$ eV.
Constraining cascade transitions in 12C(α,γ) reaction

- E2 and E1 transition to the ground state dominate.
- The cascade transitions may contribute as well.
- The contribution of the 0^+ 6.05 MeV transition is uncertain:
 - 25 ± 15 keV b (15% of the total) [1]
 - <1 keV b (negligible) [2]

Constraining cascade transitions in $^{12}\text{C}(\alpha,\gamma)$ reaction

- Spectrum of deuterons from $^6\text{Li}(^{12}\text{C},d)$ reaction. Total energy of the ^{12}C beam is 9 MeV.

- Angular distributions

Constraining cascade transitions in $^{12}\text{C}(\alpha,\gamma)$ reaction

ANC of all sub-threshold states in ^{16}O

<table>
<thead>
<tr>
<th>$^{16}\text{O}(0^+)^2$ (10^6 fm^{-1})</th>
<th>$^{16}\text{O}(3^-)^2$ (10^4 fm^{-1})</th>
<th>$^{16}\text{O}(2^+)^2$ $(10^{10} \text{ fm}^{-1})$</th>
<th>$^{16}\text{O}(1^-)^2$ $(10^{28} \text{ fm}^{-1})$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>2.07 ± 0.80</td>
<td>4.00 ± 1.38</td>
<td>[1]</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>1.29 ± 0.23</td>
<td>4.33 ± 0.84</td>
<td>[2]</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>1.96 ± 1.41</td>
<td>3.48 ± 2.0</td>
<td>[3]</td>
</tr>
<tr>
<td>2.43 ± 0.30</td>
<td>1.93 ± 0.25</td>
<td>1.48 ± 0.16</td>
<td>4.39 ± 0.59</td>
<td>This work</td>
</tr>
</tbody>
</table>

Constraining cascade transitions in $^{12}\text{C}(\alpha,\gamma)$ reaction

Direct capture is completely determined by the ANC of the state the α-particle is captured into.

Interference of direct capture with the resonance capture through the tails of the higher lying states is important.
The $K^\pi = 0^+$ cluster band in ^{16}O

- 0^+ at 6.05 MeV; 40% of α-SP limit. Reduced width is calculated directly from ANC and compared to the α-SP limit.
- Reduced width used in [1] for the 0^+ at 6.05 MeV was 0.01 MeV$^{1/2}$.

0$^+$ at 6.05 MeV; 40% of α-SP limit ($\gamma_\alpha = 0.48$ MeV$^{1/2}$)

- 2$^+$ at 6.91 MeV; 40% of α-SP limit.
- 4$^+$ at 10.36 MeV; 50% of α-SP limit.
- 6$^+$ at 16.27 MeV; 55% of α-SP limit.

The main neutron source for s-process in AGB stars - $^{13}\text{C}(\alpha,n)$ reaction

$^{13}\text{C}(\alpha,n)$ reaction rate has direct influence on final abundances of some s-process isotopes and in some models determines if the ^{60}Fe is produced [S. Cristallo, et al., arXiv:0902.0243v2 (2009)].

The $^{13}\text{C}(\alpha,n)$ cross section at Gamow window is dominated by tails of near α threshold states.
The 6Li(13C,d) reaction at sub-Coulomb energy

- Spectrum of deuterons from 6Li(13C,d) reaction. Total energy of the 13C beam is 8 MeV.

- Angular distribution

α - ANC for the $1/2^+$ state at 6.356 MeV in 17O.

Complete R-matrix fit for 17O

The s-factor for the $^{13}\text{C}(\alpha,n)$ reaction

s-factor [eV b]

Gamow window

$^{13}\text{C}(1/2^-) + \alpha$ with $L=1$

$1/2^+$, $3/2^+$
The s-factor for the $^{13}\text{C}(\alpha,n)$ reaction

s-factor [eV b]

- $^{13}\text{C}(1/2^-) + \alpha$ with $L=1$
- $1/2^+$, $3/2^+$

Gamow window

The $K^{\pi}=1/2^+$ and $1/2^-$ cluster band in 17O

The $K^{\pi}=0^+$ and 0^- bands in 16O have their analogous $1/2^-$ and $1/2^+$ bands in 17O.

SF from:

<table>
<thead>
<tr>
<th>16O</th>
<th>17O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+ at 6.05 MeV (40%)</td>
<td>1/2$^-$ at 3.06 MeV (30%)</td>
</tr>
<tr>
<td>$1/2^-$ at 6.36 MeV (50%)</td>
<td>SF from:</td>
</tr>
<tr>
<td>$1/2^+$ at 7.20 MeV (50%)</td>
<td></td>
</tr>
<tr>
<td>$3/2^+$ at 7.40 MeV (50%)</td>
<td></td>
</tr>
<tr>
<td>$7/2^+$ at 9.70 MeV ???</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^- at 9.5 MeV (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17O</th>
</tr>
</thead>
<tbody>
<tr>
<td>3^- at 11.6 MeV (100%)</td>
</tr>
</tbody>
</table>
Summary

✓ Sub-Coulomb α-transfer reaction provides a model independent way to constrain the astrophysical reaction rates.

✓ The method was benchmarked against known width of 1− state at 5.79 MeV in 20Ne.

✓ Cascade transitions (CT) s-factor for 12C(α,γ) reaction have been constrained. The combined CT contribution does not exceed 4% of the total cross section.

✓ Uncertainties of the neutron source for the s-process reaction 13C(α,n) have been dramatically reduced.

✓ The first three members of the highly clustered rotational band $K^\pi=1/2^+$ are firmly established in 17O.
THANK YOU!