

The National Superconducting Cyclotron Laboratory Michigan State University

New Instrumentation for the Equation of State Study at present and future facilities

The National Superconducting Cyclotron Laboratory

FRIB Construction Progress

above ground! April 1, 2015

FRIB Construction Progress

 To probe fundamental questions on the nature of nuclear matter especially the isospin asymmetric matter.
 To recreate and study astrophysical environments

- At $\rho << \rho_0$: Establish observables to study cluster effect and link to neutrinosphere physics.
- At $\rho \le \rho_0$: Improve constraints from both structure and reaction experiments:
- At $\rho \approx 1.5 2\rho_0$: Determine symmetry energy and the momentum dependence of the isovector potential.

Symmetry Energy Project

nn collisions

International Efforts

Productions of high intensity high energy Radioactive Isotope Beams for the EoS studies

ASY-EOS S394 experiment @ GSI Darmstadt (May 2011) Au+Au, ⁹⁶Zr+⁹⁶Zr , ⁹⁶Ru+⁹⁶Ru @ 400 AMev P. Russotto

Prospects at GSI/FAIR

PLAWA

Califa

Symmetry energy at supranormal densities

- Radioactive beams at the highest rigidities
- Study of momentum dependence of symmetry energy
 - Extend studies to higher densities
 - Pion ratio sensitive at 250-400A MeV -> complete systematics Kaon ratio requires dedicated detector (magnet + tracking + ToF)
 - Feasibility needs to be proven -> HADES stable beams
 - n/p and t/3He ratio
 - neutron + charged particle detectors
 - detectors for reaction plane and impact parameter determination

Pion Observable

Resonance	Quarks	∆ Formation	∆ Decay
Δ^{++}	uuu	$p + p \rightarrow n + \Delta^{++}$	$\Delta^{++} \rightarrow \pi^+ + p$
Δ^+	uud	$p + p \rightarrow p + \Delta^+$	$\Delta^+ \rightarrow \pi^+ + n$
Δ°	udd	n + n → n + ∆°	Δ° → π⁻ + p
Δ^{-}	ddd	n + n → p + ∆ ⁻	<u>Δ⁻ → π⁻ + n</u>

Pros:

- Produced in direct n p collisions – sensitive to symmetry energy
- exit in early time Cons:
- Cross-section is low and
- Easily reabsorbed in collision medium

Pion ratios are most sensitive

FRIB-China

East Lansing

$E_{sym}(\rho)$ at supra-saturation studies at HIRFL-CSR

New Detector

Radioactive Beam:

- Iow luminosity → large coverage
 High Resolution:
- resolve many different species of produced particles
- distinguish particles by mass and charge (π^+, π^-)
- track particles in an applied magnetic field
- Versatile for a wide range of experimental programs

Time-Projection Chamber

- Products from reaction ionize detector gas inside a field cage
- Electron signal is amplified by a wire plane
- The time at which the electrons hit the pads provides the third dimension

Field cage figure courtesy of J. Estee

Solenoid vs. Dipole

Solenoid STAR, LHC, AT-TPC

- Beam trajectory can be centered in magnet independent of beam species & energy
- Optional field cage can be used to mask beam ionization
- Narrow downstream acceptance
- Limited momentum resolution at very forward angles.

Dipole EOS, T2K, SpiRIT

- Good momentum resolution in forward direction
- Wide downstream acceptance Easier to incorporate axillary detectors
- Beam trajectory influenced by B field and depend on beam species & energy
- Difficult to mask beam ionization

LAMPS@RAON in Korea

B. Hong

Prototype TPC assembled with prototype GET electronics

A Central Au+Au @ 250 AMeV

https://groups.nscl.msu.edu/hira/sepweb/pages/slideshow/tpc-exploded.html

Assembling Field Cage.

- Side panels are PCB's fabricated with Halogen-free G-10.
- Corners are fabricated from Halogen-Free G-10.
- Front and rear window frames and side struts are polycarbonate.
- Front window will be 12 μm PPTA and back window will be 125 um Kapton, with evaporated Aluminum electrodes.
- Electrode surfaces on polycarbonate and on G-10 corners are conductive epoxy.
- Cathode is aluminum honeycomb. Cathode electrode surface is Aquadag E.
- Field cage is insulated from top plate by polycarbonate ring.

Leveling of top plate with laser

•112 x 108 = 12096 pads

•Each pad: 12mm x 8mm

Pad plane made with 4 PCB glued onto bottom of a rigid top plate
The top plate is flat to within about 120 micron.

•As a result, pad-plane—anode wire heights should be constant to within 50 micron by adjusting anode and ground plane wires

Wire planes

- Anode and ground plane creates avalanche region for electrons
- Anode plane induces image charge on the pad plane
- Gating grid closes off amplification region when not triggered

Plane	height (mm)	pitch (mm)	diameter(μm)
Anode	4.05	4	20
Ground	8.1	1	75
Gating grid	14	1	75

(12mm x 8mm pads)

TRI

Wire planes – mounting

Gating grid

x-Axis [cm] Gartield simulation of closed gating grid electrons trapped by the wires

0.2

0.2

Installation of TPC into SAMURAI magnet

- Rails allow TPC to be inserted and removed from magnet chamber
- Successful insertion first tested Summer 2014

Cosmic tracks with GET (6048 channels) February 2015

TPC with GET electronics installed on half of pad plane

Reconstructed path from cosmic ray in TPC (Genie Jhang & Jung Woo Lee)

Software Development: Jhang et al

Frame work established Effort will continue for on-line offline data analysis

Found 170 tracklets out of 80 produced charged particles

All tracklets

Tracks from 90Sr, cosmic, and cosmic inside magnet

Genie Jhang & Jung Woo Lee

- Comparisons of neutron-rich to neutron-deficient reactions enhance the symmetry energy effect
- \succ Sensitivity increases with $\Delta \delta$
- Propose 132Sn+124Sn; 108Sn+112Sn reactions

Heavy Ion Collisions at high density with RIB

Old data: Au+Au, E/A=150 to 1500 MeV

Proposed New Experiments at RIB facilities

pi-/pi+	300 MeV & 200 MeV				
Beam	tgt	N/Z(beam)	N/Z(tgt)	N/Z(CN)	N/Z diff
132Sn	124Sn	1.64	1.48	1.56	0.16
132Sn	112Sn	1.64	1.24	1.44	0.40
108Sn	124Sn	1.16	1.48	1.32	-0.32
108Sn	112Sn	1.16	1.24	1.20	-0.08
124Sn	124Sn	1.48	1.48	1.48	0.00
112Sn	112Sn	1.24	1.24	1.24	0.00
112Ru	112Sn	1.55	1.24	1.38	0.31
126Sn	112Sn	1.52	1.24	1.38	0.28

Beam	tgt	N/Z(beam)	N/Z(tgt)	N/Z(CN)	N/Z diff
132Sn	64Ni	1.64	1.29	1.51	0.35
108Sn	58Ni	1.16	1.07	1.13	0.09

Beam	tgt	N/Z(beam)	N/Z(tgt)	N/Z(CN)	N/Z diff
56Ni	58Ni	1.00	1.07	1.04	-0.07
68Ni	64Ni	1.43	1.29	1.36	0.14

First experiment (132Sn+124Sn & 124+112Sn) Planned in Spring 2016

Day 1 experiment: Triggered by multiplicity and beam veto

Workshop on Science with

June 5-6, 2015, RIKEN

nn collisions

Workshop on Science with STRIT

π

AFI

June 5-6, 2015, RIKEN

From multifragmentation To femtonova

TELEL

Workshop on "Science with SpiRIT TPC", June 5-6, 2015

Probe symmetry energy $\rho > \rho_0$ with sub-threshold pions

- Pion ratio shows the strong dependence on the symmetry energy continues to lower incident energies.
- Measuring at several incident energies provides an important test of theoretical description of sub-threshold pion production.
- Requires moveable solenoid to allow placement of TPC on the high energy beam lines.

Magnetic Field Considerations

Solenoid

- active shield magnets eliminate the Fe shielding
- Decrease the size and weight of solenoid → "portable" solenoid.
- price of solenoid comes down by refurbishing MRI magnets
- Advance in large area micro-Megas and GEM to replace wire planes
- Availability of GET electronics

Dipole

- dipole is expensive and heavy
- Not movable; Multi-users means difficulty with scheduling

HR-TPC: facilitating EoS and High resolution active target measurements with fast beams (Chajecki et al., WMU+MSU)

- Adopts much of the design of the AT-TPC
- portable MRI magnet & MICROMEGAS gas amplification
- Beam enters through MICROMEGAS
- Cathode allows passage of charged particle ancillary detectors downstream.

Chajecki & Lynch

Summary & Outlook

Nature of Neutron Star and EoS of Asymmetric matter – Important topics in the nuclear physics community Long Range Plan.

- International programs: new instrumentation & collaborations
- Coordinate international effort to study EOS of neutron rich nuclear matter over a range of densities
- Exciting and Challenging times -- New Results from ASYS_EOS and SpiRIT Collaboration
- ▶ Instrumentation to measure neutrons, charged particles, and pions
- → HRTPC at the HRS for FRIB (but can be used at NSCL now);
- Beam availability (FRIB, NSCL, TAMU, FSU, JLAB, RCNP, RIKEN, GANIL, GSI, Lanzhou, RAON, Mainz,...)
- > Need theory support with immediate impact on experimental plans.
- > Manpower: faculty, postdocs and students