

Contribution ID: 243 Type: Poster

Exploring the high spin states of ^{88}Zr

Click here to download the template: <a href="https://agenda.infn.it/materialDisplay.py?mater Word , Lat

\documentstyle[12pt,epsf]{article}

\pagestyle{plain}

\tolerance=10000

\setlength {\textheight}{24.0cm}

\setlength {\topmargin}{-3.0cm}

\setlength {\textwidth}{17.0cm}

\setlength {\hoffset}{1.5cm}

\setlength {\evensidemargin}{-2cm}

\setlength {\oddsidemargin}{-2cm}

\parskip 0pt

\begin{document}

% do not change the conference title

\vspace*{0.5cm}

\begin{center}

% insert the title of your abstract here

{\large \bf Exploring the high spin states of $^{88}{\rm Zr}{}$

\end{center}

$\verb|\begin{center}|$

% insert the authors here. The presenter is underlined

\underline{S. Saha}¹, R. Palit¹, J. Sethi¹, S. Biswas¹, P. Singh¹, D. Choudhury¹, P. C. Srivastava² \end{center}

$\verb|\begin{center}|$

% these are the corresponding institutions

 $\ensurement{ ^{1}}$ Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India} \\

{\em $^{\acute{2}}$ Department of Physics, Indian Institute of Technology, Roorkee - 247667, India}\\ \end{center}

% write your abstract here

Understanding of the complex structure and dynamics of a nuclear system requires investigation of motion of the constituent nucleons and their mutual interactions. The high spin states of a nucleus near shell closure provide unique test bench for exclusively studying the excitations of the valence shell nucleons in the nuclear mean field and the residual interactions. In addition, a number of

interesting phenomena are observed in doubly closed shell nuclei, like, the evolution of collectivity and presence of high spin isomers, to mention a few \cite{heyde11}. Nuclei around 90 Zr having Z=40 sub-shell closure and N=50 major shell closure are perfect candidates to probe these emergent phenomena \cite{ssaha12}. Recently, the high spin states of 88 Zr were populated with 13 C(80 Se, ^{5}n) reaction using ¹³C beam at 60 MeV from TIFR-BARC pelletron facility \cite{ssaha14}. The γ -rays emitted from the residual nuclei were detected using 18 Compton suppressed clover HPGe array, know as INGA \cite{pa12}. The energy, spin and parity of several states of ⁸⁸Zr have been assigned. The results have been compared with large scale shell model calculations for full unrestricted f_5pg_9 model space using two recently developed interactions JUN45 \cite{honma09} and jj44b \cite{brown}. Although, there are overall good agreement between the calculated and the experimental results, at high spin their differences have been observed to be increased. To explore further higher spin states a more symmetric reaction was performed using $^{30}\mathrm{Si}$ beam and $^{65}\mathrm{Cu}$ target at 137 MeV. A number of high energy transitions have been observed indicating contribution from particle excitation across the 50 shell gap. In this conference, the spectroscopic study of ⁸⁸Zr produced using the two different reactions will be presented and the results will be interpreted using large scale shell model calculations.

```
\\setlength \parindent{0 cm}
\\begin{thebibliography}{20}
\\bibitem{heyde11} K. Heyde and J. L. Wood, Rev. Mod. Phys. {\bf 83} (2011) 1467.
\\bibitem{ssaha12} S. Saha {\it et al.}, Phys. Rev. C {\bf 86} (2012) 034315.
\\bibitem{ssaha14} S. Saha {\it et al.}, Phys. Rev. C {\bf 89} (2014) 044315.
\\bibitem{pa12} R. Palit {\it et al.}, Nucl. Instrum. Methods A {\bf 680} (2012) 90.
\\bibitem{honma09} M. Honma, T. Otsuka, T. Mizusaki and M Hojorth-Jensen, Phys. Rev. C {\bf 80} (2009) 064323.
\\bibitem{brown} B. A. Brown and A. F. Lisetski (unpublished).
\\end{thebibliography}
\\end{document}
```

Primary author: Mr SAHA, Sudipta (Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India)

Co-authors: Dr CHOUDHURY, Deepika (Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India); Mrs SETHI, Jasmine (Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India); Dr SRIVASTAVA, P. C. (Department of Physics, Indian Institute of Technology, Roorkee - 247667, India); Dr SINGH, Purnima (Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India); Prof. PALIT, Rudrajyoti (Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India); Mrs BISWAS, Sayani (Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India)

Presenter: Mr SAHA, Sudipta (Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, India)

Track Classification: Nuclear Structure