

12th INTERNATIONAL CONFERENCE ON NUCLEUS -NUCLEUS COLLISIONS June 21-26, 2015, Catania, Italy

Overview of Anisotropic Flow Measurements from ALICE

You Zhou Niels Bohr Institute (for the ALICE Collaboration)

Anisotropic Flow

* "Anisotropic flow, described by the Fourier coefficients of the azimuthal particle distributions w.r.t. the reaction plane, could be used to probe the Quark-Gluon Plasma."
PRD 46, 229 (1992)

$$arepsilon_2 = \left\langle rac{y^2 - x^2}{y^2 + x^2}
ight
angle$$
 coordinate space Eccentricity

$$v_2 = \langle \cos 2 \left(arphi - \Psi_{
m RP}
ight)
angle$$
 momentum space Elliptic Flow

You Zhou, NN2015, Catania

Elliptic Flow

- Charged particle v₂ measurements and the comparison with hydrodynamic calculations
 - constrain the initial state model, EoS, ...
 - extract the η/s, properties of the hot and dense matter (liquid)
- From charged particle v₂
 - big uncertainty of η/s (0.08 \Leftrightarrow 0.16)!!
 - model dependence of initial conditions, e.g. eccentricity ϵ_2 (Glauber or CGC)

Discovery

- addition constraints
 - v₂ of identified particles!

ALICE

Identified particle flow

- Identified particle flow
 - further constraints of the initial state and collision dynamics
 - Anisotropy ε_n, EoS, η/s
 - (multi-)strange particles: small hadronic sections
 - insensitive to final hadronic interactions
 - additional information from early stage

Large Hadron Collider (LHC) "Large Heavy ion Collider" (LHC)

CMS

ALICE

LHCb

The ALICE Detector

- ~ 1200 people, 30 countries,
- ~ 150 Institutes

You Zhou, NN2015, Catania

First charged particle flow at LHC

CERN, November 26, 2010: 'the much hotter plasma produced at the LHC behaves as a very low viscosity liquid..' **

a 30% increase of v₂ from RHIC to LHC

Discover

Identified particle v_2 (low p_T)

ALI-PUB-82977

ALI-PUB-82989

ALICE Collaboration, arXiv:1405.4632, accepted by JHEP

Discovery

9

Low $p_T (p_T < 3 \text{ GeV}/c)$:

- exhibits mass ordering
- similar observations at RHIC energies

Comparisons with hydrodynamics

• Hydrodynamic calculation qualitatively describes the PID v_2 measurements

• (multi-)strange particle v_2 do not follow the exact ordering

Identified particle v_2 (immediate p_T)

ALI-PUB-82977

ALI-PUB-82660

Intermediate p_T (3 < p_T < 6 GeV/c):

- Rough grouping based on type (mesons/baryons)
- Consistent with RHIC observations?

You Zhou, NN2015, Catania

Number of constituent quark scaling

NCQ scaling serves as a test for particle production via quark coalescence
 Neither v₂/n_q vs. p_T/n_q (n_q: number of quarks per meson/baryon) or v₂/n_q vs. (m_T-m₀)/n_q gives a universal/precise scaling.

You Zhou, NN2015, Catania

Discovery

Pb-Pb collisions

p-Pb collisions

Pb-Pb @ sqrt(s) = 2.76 ATeV

Flow signature in p-Pb collisions

 $QC\{2\} = v_2^2$ $QC\{4\} = -v_2^4$

ALICE Collaboration, Phys. Rev. C 90 (2014) 054901

> Flow signature

14 Discovery

Identified particle v_2 in p-Pb

p-Pb collisions

Discover

15

 \clubsuit Identified particle v₂ show mass ordering in p-Pb collisions

- v₂ is extracted using "central peripheral subtraction" method
- Indication of flow (?)
- EPOS (hydro+transport model) reproduces similar feature

Identified particle v₂ in p-Pb

p-Pb collisions

Discovery

16

- The characteristic v₂(p_T) mass-ordering of pions, kaons and protons is observed in UrQMD
 - the consequence of hadronic interactions
 - not necessarily associated with strong fluid-like expansions.

p-Pb collisions

pp collisions

You Zhou, NN2015, Catania

QC{n} in pp collisions

- For the presented multiplicity range,
 - both QC{2} and QC{4} decrease with increasing multiplicity,
 - QC{4} is positive.
 - indication of non-flow, no clear flow signature
 - Pythia and Phojet overestimate the strength of such correlations.

Identified particle v₂ in pp collisions

p-Pb collisions

pp collisions

Identified particle v₂ measurements in pp collisions

- mass dependence (?), no crossing of v₂ of mesons and baryons
- More hints will be obtained by analyzing high multiplicity pp events.

Summary and Outlook

- The anisotropic flow of charged and identified particles measured in Pb-Pb, p-Pb and pp collisions bring a lot of information of QGP ("perfect liquid"),
 - meanwhile some puzzles remains (flow in p-Pb and pp?)
- The LHC RUN2 program starts this month!
 - the measurements of anisotropic flow will shed new light into the properties of produced matter in these collisions.

You Zhou, NN2015, Catania

Thanks for your attention!

You Zhou, NN2015, Catania

Flow Methodology I

P, K, p: identification via combination of TPC and TOF information

- energy loss in TPC and time of flight from TOF combined, optimized as function of p_T for purity and
- Purity > 95% for $p_T < 6$ GeV/c

 Elliptic flow of p, K, p are directly measured via Scalar Product method with |Δη| gap.

Not only v_2 but also v_3 , v_4 , v_5

Citation>250 times

Discovery

23

- Almost perfect matches between data and theory!
- * Data prefers the IP-Glasma initial conditions and $\eta/s = 0.20$.

Traditionally *Flow* analyses look for correlations w.r.t common symmetry planes over a large range in p_{T} .

• Constraints on the initial state and η/s .

You Zhou, NN2015, Catania

Lesson learned from RHIC

intermediate p_T:
 Number of constituent Quark scaling (for v₂/n_q v.s. p_T/n_q and KE_T/n_q)

Theoretical side:

0.0

0.0

1.2

1.0

0.8 0.6

0.2

0.0

1.0

0.8 0.6 $\frac{3}{2}$ 0.4 0.2

, >[∞] 0.4 n/s = 0.08

n/s = 0.16

n/s = 0.16

η/s = 0.24

0.4

MC-Glauber initialization

0.6 0.8

 p_{τ} (GeV)

1.0

0

- \bullet low p_T :
 - > PID v_2 reproduce by

0.2

- hydrodynamic calclations
- Glauber & η/s=0.08 and CGC
 & η/s= 0.16 works well

You Zhou, NN2015, Catania

Lesson learned from RHIC

Experimental side:

 \bullet low p_T :

mass ordering

intermediate p_T:

Number of constituent Quark scaling (for v_2/n_q v.s. p_T/n_q and KE_T/n_q)

NCQ scaling:
 Quark Coalescence mechanism

