Symmetry Energy: in Structure and in Central and Direct Reactions

Pawel Danielewicz

Natl Superconducting Cyclotron Lab, USA

The 12th International Conference on Nucleus-Nucleus Collisions June 21-26, 2015, Catania, Italy

Isovector Skins

Supranormal $S(\rho)$

Equation of State

Symmetry Energy

Danielewicz

Danielewicz

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{mic}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:

Thomas-Fermi (local density) approximation:

 $C' \equiv \frac{A}{a_a(A)} = \int \frac{\rho \,\mathrm{d}\mathbf{r}}{S(\rho)} = \frac{A}{a_a^V}, \ \text{for} \ S(\rho) \equiv a_a^V$

TF breaks in nuclear surface at $\rho < \rho_0/4$ PD&Lee NPA\$18(2009)36

r

ρ

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{\text{mic}}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:

Thomas-Fermi (local density) approximation:

TF breaks in nuclear surface at $\rho < \rho_0/4$ PD&Lee NPA\$18(2009)36

r

ρ

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{\text{mic}}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:

S NSCL

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{\text{mic}}$$

Symmetry energy: charge $n \leftrightarrow p$ symmetry of interactions Analogy with capacitor:

TF breaks in nuclear surface at
$$\rho < \rho_0/4$$
 PD&Lee NPA818(2009)36
Symmetry Energy

r

ρ

Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin spac

sym energy $E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

э

ヘロン ヘアン ヘビン ヘビン

Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T,T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy
$$E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

э

ヘロト ヘアト ヘビト ヘビト

Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined with details of other terms: Coulomb, Wigner & pairing + even those asymmetry-independent, due to (N - Z)/A - A correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy $E_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

ヘロト 人間 ト ヘヨト ヘヨト

Isobaric Chains and Symmetry Coefficients

Energy Levels of A=16 Isobaric Chain

Symmetry Coefficient Nucleus-by-Nucleus Mass formula generalized to the lowest state of a given *T*: $E(A, T, T_z) = E_0(A) + 4a_a(A) \frac{T(T+1)}{A} + E_{mic} + E_{Coul}$ In the ground state *T* takes on the lowest possible value $T = |T_z| = |N - Z|/2$. Through '+1' most of the Wigner term absorbed.

?Lowest state of a given *T*: isobaric analogue state (IAS) of some neighboring nucleus ground-state.

From $a_a(A)$ to $S(\rho)$

Strong $a_a(A)$ dependence [PD & Lee NPA922(14)1]: lower $A \Rightarrow$ more surface \Rightarrow lower $\rho \Rightarrow$ lower S

Introduction

Mass Formula & IAS

Isovector Skins

Supranormal $S(\rho)$

Results f/different Skyrme ints in half- ∞ matter.

Isoscalar ($\rho = \rho_n + \rho_p$; blue) & isovector ($\rho_n - \rho_p$; green) densities displaced relative to each other.

As $S(\rho)$ changes, so does displacement.

Why Isovector Rather than Neutron Skins Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau - T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielasti

・ロト ・ 同ト ・ ヨト ・ ヨト

Why Isovector Rather than Neutron Skins Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau - T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielasti

イロト イポト イヨト イヨト

Not suppressed by low (N - Z)/A!

Nucleon optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau - I_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_4

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielasti

イロト イポト イヨト イヨト

Why Isovector Rather than Neutron Skins Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_{-}T_{+}}{A}U_{1}$ Elastic scattering dominated by U_{0} Quasielastic governed by U_{1} Geometry usually assumed the same for U_{0} and U_{1} e.g. Koning & Delaroche NPA713(03)231 ?Isovector skin ΔR from comparison of elastic and quasiela (p,n)-to-IAS scattering?

Not suppressed by low (N - Z)/A!

Nucleon optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1 e.g. Koning & Delaroche NPA713(03)231 ?Isovector skin ΔR from comparison of elastic and quasiela (p,n)-to-IAS scattering?

Not suppressed by low (N - Z)/A!

Nucleon optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielastic (p,n)-to-IAS scattering?

Not suppressed by low (N - Z)/A!

Nucleon optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielastic (p,n)-to-IAS scattering?

Data: Patterson *et al.* NPA263(76)261 Calculations: PD & Singh (preliminary) with and without change ΔR in radius of U_1 compared to elastic Before *n*-skin: Stephen Schery

Large \sim 0.5 fm skins!

0.00 L 30

50

70

100

Α

200

A D > A P >

300

ъ

Constraints on Symmetry-Energy Parameters

Constraints on $S(\rho)$

Symmetry Energy

æ

< E

Pions Probe System at High- ρ !

Elementary processes: $N + N \leftrightarrow N + \Delta$, $\Delta \leftrightarrow N + \pi$

 π test the maximal densities reached and collective motion then

イロト イポト イヨト イヨ

Pions as Probe of High- ρ Symmetry Energy B-A Li: $S(\rho > \rho_0) \Rightarrow n/p_{\rho > \rho_0} \Rightarrow \pi^-/\pi^+$

Dedicated Experimental Efforts

SAMURAI-TPC Collaboration (8 countries and 43 researchers): comparisons of near-threshold π^- and π^+ and also *n-p* spectra and flows at RIKEN, Japan. NSCL/MSU, Texas A&M U Western Michigan U, U of Notre Dame GSI, Daresbury Lab, INFN/LNS U of Budapest, SUBATECH, GANIL China IAE, Brazil, RIKEN, Rikkyo U Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)

Symmetry Energy

Danielewicz

FOPI: π^-/π^+ at 400 MeV/nucl and above Hong & PD, PRC90(14)024605: measured ratios reproduced in transport irrespectively of $S_{int}(\rho) = S_0 (\rho/\rho_0)^{\gamma}$:

Original Idea Still Correct for High- $E \pi$'s

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- IAS energies insufficiently constrain $L \rightarrow$ skin info needed!
- Isovector skins large and relatively weakly dependent on nucleus! Large $\Delta R \sim 0.5 \,\text{fm} \Rightarrow L \sim 70 \,\text{fm}$
- Comprehensive analysis of elastic/quasielastic scattering data needed!
- In the region of $\rho \gtrsim \rho_0$, $S(\rho)$ is quite uncertain. One promising observable is high-en charged-pion yield-ratio around NN threshold.

Symmetry Energy

Danielewicz

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- IAS energies insufficiently constrain $L \rightarrow$ skin info needed!
- Isovector skins large and relatively weakly dependent on nucleus! Large $\Delta R \sim 0.5 \,\text{fm} \Rightarrow L \sim 70 \,\text{fm}$
- Comprehensive analysis of elastic/quasielastic scattering data needed!
- In the region of $\rho \gtrsim \rho_0$, $S(\rho)$ is quite uncertain. One promising observable is high-en charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD PRC90(14)024605; PD&Sing US NSF PHY-1068571 & PHY-1403906 + Indo-US Grapt

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- IAS energies insufficiently constrain $L \rightarrow$ skin info needed!
- Isovector skins large and relatively weakly dependent on nucleus! Large $\Delta R \sim 0.5 \,\text{fm} \Rightarrow L \sim 70 \,\text{fm}$
- Comprehensive analysis of elastic/quasielastic scattering data needed!
- In the region of $\rho \gtrsim \rho_0$, $S(\rho)$ is quite uncertain. One promising observable is high-en charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD PRC90(14)024605; PD&Sing US NSF PHY-1068571 & PHY-1403906 + Indo-US Graph

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- IAS energies insufficiently constrain $L \rightarrow$ skin info needed!
- Isovector skins large and relatively weakly dependent on nucleus! Large $\Delta R \sim 0.5 \,\text{fm} \Rightarrow L \sim 70 \,\text{fm}$
- Comprehensive analysis of elastic/quasielastic scattering data needed!
- In the region of $\rho \gtrsim \rho_0$, $S(\rho)$ is quite uncertain. One promising observable is high-en charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD PRC90(14)024605; PD&Sing US NSF PHY-1068571 & PHY-1403906 + Indo-US Graph

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- IAS energies insufficiently constrain $L \rightarrow$ skin info needed!
- Isovector skins large and relatively weakly dependent on nucleus! Large $\Delta R \sim 0.5 \,\text{fm} \Rightarrow L \sim 70 \,\text{fm}$
- Comprehensive analysis of elastic/quasielastic scattering data needed!
- In the region of $\rho \gtrsim \rho_0$, $S(\rho)$ is quite uncertain. One promising observable is high-en charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD PRC90(14)024605; PD&Sing US NSF PHY-1068571 & PHY-1403906 + Indo-US Grapt

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- IAS energies insufficiently constrain $L \rightarrow$ skin info needed!
- Isovector skins large and relatively weakly dependent on nucleus! Large $\Delta R \sim 0.5 \,\text{fm} \Rightarrow L \sim 70 \,\text{fm}$
- Comprehensive analysis of elastic/quasielastic scattering data needed!
- In the region of ρ ≥ ρ₀, S(ρ) is quite uncertain. One promising observable is high-en charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD PRC90(14)024605; PD&Sing US NSF PHY-1068571 & PHY-1403906 + Indo-US Grapt

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- IAS energies insufficiently constrain $L \rightarrow$ skin info needed!
- Isovector skins large and relatively weakly dependent on nucleus! Large $\Delta R \sim 0.5 \,\text{fm} \Rightarrow L \sim 70 \,\text{fm}$
- Comprehensive analysis of elastic/quasielastic scattering data needed!
- In the region of ρ ≥ ρ₀, S(ρ) is quite uncertain. One promising observable is high-en charged-pion yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD PRC90(14)024605; PD&Singh US NSF PHY-1068571 & PHY-1403906 + Indo-US Grant