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Energy in Uniform Matter
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Mass Formula & IAS
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsacker form2ula:

Z N — Z)?
E:—avA+asA2/3+30A1/3+aa(A)+Emic

Symmetry energy: charge n «» p symmetry of interactions

independent capacitors
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Mass Formula & IAS
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsacker form2ula:

V4 N — Z)?
E= —aVA+asA2/3+aCW —l-aa% + Emic
Symmetry energy: charge n «» p symmetry of interactions

Analogy with capacitor:

N2 (N-2ZP @
E,=a, A = y: @E72C

aa

independent capacitors
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsacker form2ula:

Z N — Z)?
E:—avA+asA2/3+30A1/3+aa(A)+Emic

Symmetry energy: charge n «» p symmetry of interactions
Analogy with capacitor:

L N-ZP (N2 @
Fa=aa—7— = A “E=3¢c
, N-2Z2)? N — Z)?
?Volume Capacitance? Ea:( ) ) (A Az)/a
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Mass Formula & IAS
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsacker form2ula:

Z N — Z)?
E:—avA+asA2/3+30A1/3+aa(A)+Emic

Symmetry energy: charge n «» p symmetry of interactions
Analogy with capacitor:

Q
N2 (N-2ZP @
E,=a, A = aA < E = 5C
. N —2)? N —Z)?
?Volume Capacitance? E, = ( y ) — (A Az)/a
2 al e
independent capacitors
Thomas-Fermi (local density) approximation:
A " pdr A
'C'= = =, for S(p)=aY
a(A) ] S(p) &y’ “[©
, o

TF breaks in nuclear surface at p < po/4 PD&Lee NPA818(2009)36
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Mass Formula & IAS
[ Jele]

Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!
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Mass Formula & IAS
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Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!
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Mass Formula & IAS
[ Jele]

Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states
characterized by different isospin values (T, T),
T, = (Z — N)/2. Nuclear energy scalar in isospin space:

—7)2 2

sym energy Ea = as(A) (NAZ) =4 a,4(A) %
T2 (T +1
NSCL
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Mass Formula & IAS
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Isobaric Chains and Symmetry Coefficients
Energy Levels of A=16 Isobaric Chain

T=1 Isobaric
Analog
States

Energy
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Mass Formula & IAS
ooe

Symmetry Coefficient Nucleus-by-Nucleus
Mass formula generalized to the lowest state of a given T:

T(T +1
E(AT.T.) = Eo(A) + 4aa(A) L) L B4 Eoo

In the ground state T takes on the lowest possible value
T =|T;| = |N — Z|/2. Through '+1" most of the Wigner term absorbed.

?Lowest state of a given T: isobaric analogue state (IAS) of

some neighboring nucleus ground-state.
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Mass Formula & IAS
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From as(A) to S(p)
Strong a(A) dependence [PD & Lee NPA922(14)1]:
lower A = more surface = lower p = lower S

e I o maass SR o o o B N L B
L L @ 1AS constraints pa
ol -] 50~ _ _. extrapolation e /t
L L P
C r Specific Skyrme: /// 7 b
R0 - 40~ — - ska3 Ry
% E ,>\ r - ska5s20 /—— 1
2 15 4 2 sl @ -3
r 2 Or = . ]
P r r ~ ]
© [ 0% ',5..- o IAS+Koura “oor Ve 7 ~o ]
101~ 6. % * Skyrme: B R0 — // il s
L % ' ] [ e ]
: . ¢ Skad ] 7 ]
5F ® ska25s20 — 10,4///// —]
L " Gs ] :// 7.7 ]
F ] L7 ]
[ ] 4 ]
(e ‘ L1 ‘ ‘ L1 ‘ Ll ‘ ‘ L1 o] A —— ‘ L ‘ L1 ‘ L ‘ L
5 10 20 50 100 200 500 0.00 0.05 0.10 0.15 0.20
A p (fm™) -
aa(A) from IAS give rise to constraints on S(p) in Q)
NSCL

Skyrme-Hartree-Fock calculations

Symmetry Energy Danielewicz



Isovector Skins
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Auxiliary Info: Skins
‘ ‘ Results f/different Skyrme
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Isovector Skins
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Strategies for n and p Densities

PD

elastic: ~p+n

charge exchange: ~n—p

Jefferson Lab
Direct: ~ p
Interference: ~ n

T~ e
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Why Isovector Rather than Neutron Skins

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb
limit, the same for every nucleus!

%

2l
(%)
@)
(=i

Symmetry Energy Danielewicz



Why Isovector Rather than Neutron Skins

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb
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Why Isovector Rather than Neutron Skins

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb
limit, the same for every nucleus!

Nucleon optical potential in isospin space:

47T
U—U0+TU1

isoscalar potential Uy o p, isovector potential U; o (pn — pp)
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Why Isovector Rather than Neutron Skins

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb
limit, the same for every nucleus!

Nucleon optical potential in isospin space:

47T
U—U0+TU1

isoscalar potential Uy o p, isovector potential U; o (pn — pp)
In elastic scattering U = Uy + Y3£ U
4r_

In quasielastic charge-exchange (p,n) to IAS: U = AT* Ui
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Why Isovector Rather than Neutron Skins

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb
limit, the same for every nucleus!

Nucleon optical potential in isospin space:

47T
U—U0+TU1

isoscalar potential Uy o p, isovector potential U; o (pn — pp)
In elastic scattering U = Uy + Y3£ U

In quasielastic charge-exchange (p,n) to IAS: U = 4T*AT+ Ui
Elastic scattering dominated by U

Quasielastic governed by U,
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Why Isovector Rather than Neutron Skins

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb
limit, the same for every nucleus!

Nucleon optical potential in isospin space:

47T
U—U0+TU1

isoscalar potential Uy o p, isovector potential U; o (pn — pp)
In elastic scattering U = Uy + Y3£ U

In quasielastic charge-exchange (p,n) to IAS: U = 4T*AT+ Ui
Elastic scattering dominated by U

Quasielastic governed by U,

Geometry usually assumed the same for Uy and U;

e.g. Koning & Delaroche NPA713(03)231
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Why Isovector Rather than Neutron Skins

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb
limit, the same for every nucleus!

Nucleon optical potential in isospin space:

47T
U—U0+TU1

isoscalar potential Uy o p, isovector potential U; o (pn — pp)

In elastic scattering U = Uy + Y3£ U

In quasielastic charge-exchange (p,n) to IAS: U = 4T*AT+ Ui
Elastic scattering dominated by U

Quasielastic governed by U,

Geometry usually assumed the same for Uy and U;

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin AR from comparison of elastic and quasielastic
(p,n)-to-1AS scattering?
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Quasielastic (p,n) Reaction to IAS: Skin or No-Skin?

T
10! QE (pm) & e data + — KD — KD+AR

E,=25MeV 1% < E,=25 MeV Jom, _ E,=25 MeV
\ _

do/dQ (mb/sr)

0 50 100 150 O 50 100 150 O 50 100 150 O 50 100 150
Ocrm (deg)
Data: Patterson et al. NPA263(76)261
Calculations: PD & Singh (preliminary) with and without change
AR in radius of U; compared to elastic
Before n-skin: Stephen Schery
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Isovector Skins
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Size of Isovector Skin
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Isovector Skins
L 1)

Constraints on Symmetry-Energy Parameters
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Isovector Skins
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Constraints on S(p)
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Supranormal S(p)
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Pions Probe System at High-p!

Elementary processes: N+ N N+ A, A+— N+«

La + La 800 MeV/nucleon b = 0
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Supranormal S(p)
[e] Jele]e]

Pions as Probe of High-p Symmetry Energy
B-ALi: S(p > po) = N/Ppsp, = 7 /7
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Supranormal S(p)
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Dedicated Experimental Efforts
SAMURAI-TPC Collaboration (8 countries and 43
researchers): comparisons of near-threshold 7~ and = and
als,\?srgﬁ/?\;l)gatrg]l_ and fk)él(\l'\j ellJt RIKEN, Japan. /

, Texas P e
Western Michigan U, U of Notre Dame @
GSI, Daresbury Lab, INFN/LNS ]
U of Budapest, SUBATECH, GANIL
China IAE, Brazil, RIKEN, Rikkyo U
Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)
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Supranormal S(p)
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FOPI: 7= /=" at 400 MeV/nucl and above
Hong & PD, PRC90(14)024605: measured ratios reproduced
in transport irrespectively of Sini(p) = So (p/po)”:
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Supranormal S(p)
[e]e]ele] ]

Original Idea Still Correct for High-E =’s
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Conclusions
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Conclusions
@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.
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Conclusions
@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.
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Conclusions
@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ |AS energies insufficiently constrain L — skin info needed!
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Conclusions

@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ |AS energies insufficiently constrain L — skin info needed!

@ Isovector skins - large and relatively weakly dependent on
nucleus! Large AR~ 0.5fm = L~ 70fm
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Conclusions

@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ |AS energies insufficiently constrain L — skin info needed!

@ Isovector skins - large and relatively weakly dependent on
nucleus! Large AR~ 0.5fm = L~ 70fm
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Conclusions
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Conclusions
@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ |AS energies insufficiently constrain L — skin info needed!

@ Isovector skins - large and relatively weakly dependent on
nucleus! Large AR ~ 0.5fm = L ~ 70fm

@ Comprehensive analysis of elastic/quasielastic scattering
data needed!

@ In the region of p = pg, S(p) is quite uncertain. One
promising observable is high-en charged-pion yield-ratio
around NN threshold.
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Conclusions
@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ |AS energies insufficiently constrain L — skin info needed!

@ Isovector skins - large and relatively weakly dependent on
nucleus! Large AR ~ 0.5fm = L ~ 70fm

@ Comprehensive analysis of elastic/quasielastic scattering
data needed!

@ In the region of p = pg, S(p) is quite uncertain. One
promising observable is high-en charged-pion yield-ratio
around NN threshold.
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