Nuclear Structure of the Heaviest Elements revealed by High-Precision Mass Measurements

Michael Block

GSI Darmstadt

Helmholtz-Institut Mainz

Institut für Kernchemie der Johannes Gutenberg Universität Mainz

Future Directions in SHE Research at GSI

Courtesy Ch.E. Düllmann

Nuclear Shells: Magic Numbers in SHE?

M. Bender et al., Phys. Lett. B 515 (2001) 42

Importance of Masses for Z > 100

high-precision mass measurements provide

- accurate absolute binding energies to map nuclear shell effects
- anchor points to pin down decay chains
- ➡ Studies the nuclear structure evolution
- Benchmark theoretical nuclear models

Nuclear Structure Indicators from Masses

indication for shell closure at N = 152 & N = 162

Data from Atomic Mass Evaluation 2012: M. Wang et al., CPC(HEP & NP), 2012, 36(12): 1603–2014

Nuclear Structure Indicators from Masses

two-neutron separation energy

$$S_{2n}(N,Z) = M(N,Z) - M(N-2,Z) + 2 m_n$$

indication for shell closure at N = 152 & N = 162

Data from Atomic Mass Evaluation 2012: M. Wang et al., CPC(HEP & NP), 2012, 36(12): 1603–2014

Helmholtz Institute Mainz

JGU

Tools for Direct Mass Measurements

β-decays: masses from long-decay chains MUST be replaced by direct measurements Proton and alpha decays: needed for fast proton emitters, super heavy elements Reactions: (p,d) for masses (+excited states) of unbound nuclei beyond p-dripline

Courtesy G. Bollen

Principle of Penning Traps

PENNING trap

B

- Strong homogeneous magnetic field
- Weak electric 3D quadrupole field

Synthesis and Separation by SHIP

SHIPTRAP Setup

SHIPTRAP Performance

Mass resolving power of $m/\delta m \approx 100,000$ in purification trap:

 \Rightarrow separation of isobars

Mass resolving power of $m/\delta m \approx 1,000,000$ in measurement trap:

 \Rightarrow separation of isomers

Direct mass measurements with SHIPTRAP

SHIPTRAP Results vs. Atomic Mass Evaluation

Pinning Down α **-Decay Chains**

Masses of even-even N-Z = 48 and N-Z = 50 Nuclei

courtesy F. P. Hessberger

JGU

SHIPTRAP: Probing the Strength of Shell Effects

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

E. Minaya Ramirez,^{1,2} D. Ackermann,² K. Blaum,^{3,4} M. Block,^{2*} C. Droese,⁵ Ch. E. Düllmann,^{6,2,1} M. Dworschak,² M. Eibach,^{4,6} S. Eliseev,³ E. Haettner,^{2,7} F. Herfurth,² F. P. Heßberger,^{2,1} S. Hofmann,² J. Ketelaer,³ G. Marx,⁵ M. Mazzocco,⁸ D. Nesterenko,⁹ Yu. N. Novikov,⁹ W. R. Plaß,^{2,7} D. Rodríguez,¹⁰ C. Scheidenberger,^{2,7} L. Schweikhard,⁵ P. G. Thirolf,¹¹ C. Weber¹¹

Experimental

Muntian (mic-mac) Z=114 N=184

Möller FRDM Z=114 N=184

TW-99 Z=120 N=172

Z=126 N=184

JGU

SkM*

Probing the Strength of Shell Effects

Evolution of N = 152 shell closure

Data taken from Atomic Mass Evaluation (AME) 2012: M. Wang et al.

Probing the Strength of Shell Effects

N = 152 isotones

Data taken from Atomic Mass Evaluation (AME) 2012: M. Wang et al.

Upgrades and Combinations

- Novel experiments
 - trap-assisted decay spectroscopy
 - laser spectroscopy (gas cell, gas jet, trap)
 - gas phase chemistry
- Increase efficiency and sensitivity
 - novel measurement schemes (PI-ICR)
 - single-ion mass measurements (FT-ICR)
 - $(\rightarrow \text{TRIGA-TRAP, TRAPSENSOR})$
 - cryogenic gas cell

Cryogenic Gas Cell

Advantages compared to 1st generation gas cell:

- Larger stopping volume and Coaxial injection of reaction products
- Higher cleanliness due to cryogenic operation
- Larger gas density at a lower absolute pressure

C. Droese et al. NIM B 338, 126 (2014)

Cryogenic Gas Cell

Advantages compared to 1st generation gas cell:

- Larger stopping volume and Coaxial injection of reaction products
- Higher cleanliness due to cryogenic operation
- Larger gas density at a lower absolute pressure

C. Droese et al. NIM B 338, 126 (2014)

Recent Breakthrough

Phase-Imaging Ion-Cyclotron-Resonance Method

PI-ICR vs. ToF-ICR in experiment

⁴⁸Ca Mass Measurements

Proposal to integrate new "Superheavy Element" subcollaboration in NUSTAR @ FAIR submitted to Board of Representatives (Summer '14)

Focus: synthesis, nuclear structure, atomic physics, nuclear chemistry experiments in region Z ≥ 100

Existing facilities: SHIP, TASCA, SHIPTRAP, Chemistry beamline Developments for high-intensity cw-Linac ongoing (HIM, GSI, U Frankfurt)

Complementary to existing NUSTAR activities at Super-FRS

Organizational Structure: Spokesperson: Deputy: Technical Director:

R.-D. Herzberg (Univ. Liverpool) M. Block (GSI/HIM/JGU) A. Yakushev (GSI)

Currently includes 9 German and 17 international institutes

Endorsed by NUSTAR Collaboration Committee: submission to FAIR management:

Sept. 25, 2014 summer 2015

SHE research 2020+

E_{Beam} up to 7.3 MeV/u Length: 13.5 m

- Atomic structure beyond No (Z=102)
- Experiments with single SHE-ions (e.g. chemistry + mass spec)
- Chemical studies towards Eka-Rn
- New SHE molecules, their stability, formation kinetics
- New period in the periodic table

Mapping the island of stability:

- New elements with Z>118
- Neutron-rich isotopes in transfer reactions •
- Weak EC decay channels towards center of island
- Direct mapping of shell evolution towards N=184

First components – October 2014

Helmholtz Institute Mainz

JGU

SHIPTRAP Collaborators

D. Ackermann, K. Blaum, S. Chenmarev, C. Droese, Ch. Duellmann,
M. Eibach, S. Eliseev, P. Filanin, F. Giacoppo, M. Goncharov, E. Haettner,
F. Herfurth, F. P. Heßberger, O. Kaleja, M. Laatiaoui, G. Marx,
D. Nesterenko, Yu. Novikov, W. R. Plaß, S. Raeder, D. Rodríguez,
D. Rudolph, C. Scheidenberger, S. Schmidt, L. Schweikhard,
P. Thirolf, G. Vorobjev, C. Weber, ...

Summary and Conclusions

- State-of-the-art mass spectrometry provides ses of exotic nuclides with high accuracy anchor point in the set of exotic nuclides with high accuracy anchor point is a set
- High-precision mass measurements probing shell effects and tracking the evolution of nuclear are in the heaviest elements
- Technical and methodical importants will extend the reach towards more exotic nuclivity with higher *Z*
- SHE research remain interstone of science program at GSI/FAIR
- New cw-linac v v serve competitiveness in the future

