Exploration of Nuclear Structure and Decay of Heaviest Elements at GSI - SHIP

Fritz Peter Heßberger GSI – Helmholtzzentrum für Schwerionenforschung mbH, D-64291 Darmstadt, Germany Helmholtz – Institut Mainz, D-55099 Mainz, Germany

NN2015

12th International Conference on Nucleus – Nucleus Collisions Catania, Italy 21 – 26 June 2015

Version 18. 6. 2015

an man character a commence

The Strong Force

One of the four basic interactions, playing among others an essential role for

→ Quark – Gluon - Plasma
→ Formation and development of stars
→ Development of the universe
→ Synthesis of the chemical elements
→ Structure of the atomic nuclei

Physics Motivation for Synthesis and Nuclear Structure Investigations of SHE

Why synthesis and nuclear structure investigations ?

 \rightarrow Atomic nucleus is quantum mechanical ensemble of nucleons (p, n)

\rightarrow Properties determined by ,fundamental' interactions

- nucleon nucleon interaction
- Coulomb interaction
- spin orbit interaction

-

→Understanding decay properties and structure of nuclei is thus essential for understanding ,fundamental' interactions

→Superheavy nuclei (SHE) are a specific class of exotic nuclei

 \rightarrow ensembles of ,extremely' large numbers of protons and neutrons

- → despite of high density of nuclear levels ,gaps' between single particle states occur at certain numbers of Z and N indicating ,shell closures'
- → no macroscopic (,collective') fission barrier any more, stability against prompt disruption due to ,shell effects'; B_f depends on single particle levels
- \rightarrow shell structure determines nuclear mass excess \rightarrow determines Q-values for α and β decay

<u>Physics Motivation for Synthesis and Nuclear</u> <u>Structure Investigations of SHE</u>

Understanding nuclear structure of SHE is essential for understanding their properties and stability i.e. the 'limits of our world' **Topic Questions** \rightarrow Are there proton and neutron shells at all ? \rightarrow How strong are they ?

 \rightarrow Where are they located ?

Expected Decay Modes and Halflives of SHE

Velocity separator SHIP

Decay Spectroscopy of SHE

Nuclear structure investigations require a large amount of events, but production rates of SHE are low (ca. 240 /d/nb)

- → Nuclear structure of odd-A even Z nuclei is similar along isotone line
- → Nuclear structure of odd-A even Z nuclei is similar along isotope line
- → Study of systematics of (low lying) Nilsson levels in odd A nuclei

Decay schemes of the N=153 Isotones ²⁵⁵No, ²⁵⁷Rf, ²⁵⁹Sg

- \rightarrow coincidence not observed in production by a-decay of ^{261}Sg
- \rightarrow assignment to ²⁵⁷Lr unlikely due to a-a-correlation to ²⁵³No
- \rightarrow certainly related to decay of ^{257m}Rf
- \rightarrow E_a+E_v = 8.86 MeV, but E_a(^{257m}Rf) = 9.03 MeV
- \rightarrow suggests population of a level at E* \approx 170 keV (5/2+ isomer !!!)
- → cannot be $11/2-(^{257m}Rf) \rightarrow 11/2-(^{253}No)$ transition; prefers M1 transition to 9/2- gs. and not E3 transition to 5/2+ isomer
- \rightarrow a-transition only slightly hindered (HF \approx 5-10); no parity change, no spin-flip

Decay Study of ²⁵⁷Rf – expected levels in ²⁵³No

Nilsson-Levels in N=151 Isotones

Nilsson-Levels in N=153 Isotones

Direct Prove of EC of 258Db

<u>Alpha – decay branch ²⁵⁸Rf</u>

 $\frac{258}{E_{\alpha}} = 9.05 \pm 0.03 \text{ MeV}, b_{\alpha} = 0.31 \pm 0.11 \text{ (J. Gates et al. PRC 77, 034603 (2008))} \\ E_{\alpha} = 9.07 \pm 0.02 \text{ MeV}, b_{\alpha} = (0.07 \pm 0.08/-0.04, \text{ preliminary }) \text{ (this work)}$

Proof of EC Decay of ²⁵⁷Rf

Enhanced Focal Plane Detector Set-up for SHE Spectroscopy

configuration

- stop detector: 1 × DSSD (60×60 strips)
- box detectors: 4 × SSSD (32 strips)
- overall particle γ -efficiency $\approx 40\%$

chamber

- compact (overall length 35 cm)
- Al-cap with thin γ window (**1**,5 mm)
- compatible due to 150 mm standard flange
- electronics partly integrated (vacuum)

DSSD

- integrated cooling (Cu-frame) and connection (flex-PCB)
- 60×60 strips/mm (pitch 1 mm)
- 300 µm

D. Ackermann, J. Maurer, M. Vostinar, J. Piot, N. Kurz, P. Wieczorek, J. Hoffmann F.P. Heßberger et al.

Enhanced Focal Plane Detector Set-up for SHE Spectroscopy

First on-line test at LISE – Wienfilter GANIL, november 2014 40 Ar (4.66 AMeV) + 174 Yb $\rightarrow ^{209,210}$ Ra

Enhanced Focal Plane Detector Set-up for SHE Spectroscopy

Digital signal processing → FEBEX + conventional PA DSSD, Ge-detectors, • fast timing • deadtime free • pulse shape analysis options

Conclusions

→ Decay spectroscopy and ground state mass measurement are powerful tools to investigate nuclear structure of SHE in terms of

- \rightarrow ordering of nuclear levels
- → energy systematics of Nilsson levels
- \rightarrow identification of neutron (and proton) shell
- \rightarrow determination of shell strenghts
- \rightarrow the stability of (multi) quasi-particle states
- \rightarrow Measuring X-rays from EC in delayed coincidence with the decay (α , sf) is probably an alternative method for Z identification of SHN.
- → population of excited levels in daughter nuclei by EC decay is an additional source for nuclear structure information

Future Goals:

- \rightarrow identification of ,missing' levels relevant for strength and location of the ,SHE shells' at Z \leq 106
- \rightarrow detailed nuclear structure investigations at Z > 106
- \rightarrow ,more' detailed study of K isomers at Z = 100 110

<u>SHIP – SHE Nuclear Structure Collaboration</u> (Spokesman: F.P. Heßberger)

<u>GSI, Darmstadt</u> M.Block, S.Heinz, <u>F.P.H.</u>, B.Kindler, I.Kojouharov, J.Khuyagbaatar, B.Lommel

<u>Helmholtz Institut Mainz</u> A. Mistry, M. Laatiaoui, J. Even (now at TRIUMF, Vancouver)

<u>Comenius University Bratislava, Slovakia</u> S. Antalic, B. Andel, Z.Kalininova (now at JINR, Dubna), S.Saro (deceased)

GANIL, Caen, France D. Ackermann, H. Savajol, J. Piot, M. Vostinar

<u>JAEA Tokai, Japan</u> K. Nishio