

June 21-26, 2015, Catania, Italy

Clusters in Heavy Ion Collisions and the Symmetry Energy Hermann Wolter, Univ. of Munich

Aim of this short report:

 \rightarrow observation of yield and isotopic content of clusters in heavy ion collisions is a way to study the nuclear symmetry energy

→ light clusters (n,p,d,t,³He, α) and heavier clusters (intermediate mass fragments, IMF, (3≤Z≤≈20) have to be treated differently and carry different information

 \rightarrow characteristic examples for both cases

connected to talks by: Y.X. Zhang (Monday), P. Napolitani (earlier today) S. Yenello and A. Ono (plenary session tomorrow)

with

Malgorzata Zielinska-Pfabe, Piotr Decowski[†] (Smith Coll., USA), Maria Colonna (LNS Catania), and support from Remi Bougault (LPC Caen), Abdou Chbihi (GANIL, Caen)

Why is symmetry energy so uncertain?? \rightarrow In-medium ρ mass, and short range isovector tensor

- correlations (e.g. B.A. Li, PRC81 (2010));
- \rightarrow use heavy ion collisions to investigate in the laboratory

Symmetry potentials and effective masses

Z*A fragment (n,p,d,t,³He,⁴He)

Symmetry energy drives isospin content of clusters (Isospin dynamics)

V.Baran et al., NPA703(2002)603 NPA730(2004)329

¹²⁴Sn+¹²⁴Sn, 50 AMeV

Central collision, b=2 fm

Peripheral collision, b=6 fm

Multifragmentation: Isospin fractionation at low densities **Neck-fragmentation: Isospin migration** at interface with normal density

Approaches to cluster formation in HIC

1. freeze-out approx.: statistical decay of excited, equilibrated freeze-out config. "statistical clusters"

2. "dynamical clusters": transport approach with fluctuations/correlations: seeds of fragment/light cluster formation

deterministic, dissipative 1-body equation + fluctuation

QMD/AMD

$$|\Phi\rangle = A \prod_{i=1}^{A} \varphi(r; r_i, p_i) |0\rangle$$

$$\dot{r}_i = \{r_i, H\}; \quad \dot{p}_i = \{p_i, H\}; \quad H = \sum_i t_i + \sum_{i=1} V(r_i - r_j)$$

TDHF + stochastic NN collisions

difference in spectrum of fluctuations

→can be adjusted for IMF (intermediate mass fragments) formation, since IMF

formation stabilized by mean field

BUU calculation in a box (i.e. periodic boundary conditions) with initial conditions inside the instability region: $\rho = \rho_0/3$, T=5 MeV, $\delta = 0$

→ Formation of "clusters (fragments)", from small (numerical) fluctuations in the density.

Time scale = growth time of the instable modes

But LC (light cluster) formation dominated by correlations: not well described in mean field

Fragment formation II

Light clusters (LC:d,t,³He, α)

Correlation dominated (esp.Pauli-correlation). not good in BUU and MD models, since simple interactions and classical phase space distribution give bad eigenstates for LC

except(!) for AMD: can define realistic wave functions for LC with reasonable BE;

Solution for BV models:

Isopin diffusion

Transport Ratios for Projectile/Target Residues: ^{112,124}Sn + ^{112,124}Sn, 50 MeV Comparison of models:

- 1. Qualitative agreement, but not quantitative
- 2. different impact parameter dependence; to be understood

Ratios of emitted pre-equilibrium particles in central collisions

(J. Rizzo et al., PRC72,064609 (2005))

V.Giordano, et al., PRC 81(2010))

no effective mass depend.

M. Famiano, et al., PRL 97,052701 (06) M.B.Tsang, et al., PRL 102, 122701 (09)

Comparison with data: problem of light cluster description in transport approaches → "coalescence invariant" (CI) spectra

coalescence invarient spectra agree better with experiment: A poor man's substitute for not treating light clusters properly in the simulation

> favors m_n*<m_p* (in contrast to optical model analyses) → more work required!

Y.X. Zhang, M.B.Tsang, et al., PLB 732, 186 (2014) D.D.S.Coupland, arXiv 1406.4546

Interdependence of light cluster (LC) yields

Conclusions:

- cluster production in heavy ion collisions is an important source of information on the symmetry energy

- the information is different in bigger fragments (IMF, mean field dominated) and light clusters (LC, mf and effective masses)

- the single ratio spectra of LC may allow to separate the density and momentum dependence.

- more asymmetric systems and the n/p ratio are most sensitive. The t/3He ratio carries a similar information

- more precise data recently available, but not yet precise enough to determine effective masses (at stress with other determinations)

- strongly connected with the question to describe dynamical cluster formation in HIC

Grazie!

