Evaluation of inclusive breakup in reactions induced by weakly-bound nuclei within a three-body model

An old theory, but new stories

Jin Lei, A.M. Moro Departamento de FAMN, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain.

Outline

An Old Theory

Introduction

Ichimura-Austern-Vincent Model

New Stories

Related Topics

Applications

Introduction

Theories for inclusive breakup

 Prior Form Kerman, McVoy(KM) Ann. Phys. (N.Y.) 122, 197 (1979) Udagawa, Tamura(UT) Phys. Rev. C 24, 1348 (1981) Dhug. Day. C 20, 1805 (1084) 	
 Post Form Baur & co: surface approximation Nucl. Phys. A311, 141 (1978) Ichimura, Austern, Vincent(IAV):sum rule Phys.Rev. C 32, 431 (1985) Phys. Rep. 154, 125 (1987) Spectator Model Hussein, McVoy Nucl. Phys. A 445, 124 (1985) 	 30 years old!!! The old theory

IAV Model

Distinction between two cluster constituents:

- b particle is a spectator described by OMP;
- the interaction between x and A retains target degrees of freedom
- Using the Feshbach optical reduction, x-A wave function following breakup and projected on the Ags

$$(E_x - K_x - U_x)\varphi_x^0(\vec{r_x}) = (\chi_b^{(-)}|V_{bx}|\Psi^{3b}) \qquad \text{DWBA}$$
$$\Psi^{3b} \simeq \chi_a \varphi_a \Phi_A$$

 $\vec{r_{bx}}$

Nonelastic breakup (NEB): loss of flux leaving the x-Ags channel

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} E_b \mathrm{d} \Omega_b} = -\frac{2}{\hbar v_a} \rho_b(E_b) \left\langle \varphi_x^0 W_x \varphi_x^0 \right\rangle$$

imaginary part

New Stories

8

New Stories

Low energy

Reaction mechanisms of breakup around Coulomb barrier

[♠] d + A→ p + X [♠] 6,7 Li + A → α + X

Incomplete fusion: part of Nonelastic breakup

- ⁶Li + A $\rightarrow \alpha$ + B
- Surrogate reaction
 - A(n,f) \Rightarrow A(d,pf) : f is a fission fragment

Intermediate energy

- Knockout reaction (stripping)
 - $^{\bullet}$ ⁸B+⁹Be \rightarrow ⁷Be + X

Deuteron Breakup

Deuteron Breakup

In the intermediate energy J. R. Wu, Phys. Revie G, These 37, DL (tt 29, 7194) 1 (2011). NEB part was studied by semi-classical Glauber approach 1000 J.R. Wu et al. ⁵⁸Ni(d,pX) @ 80 MeV EBU (CDCC) NEB (DWBA FR) 3/dE_p (mb/MeV) 10 PE+CN EBU : Elastic Breakup Total NEB : Nonelastic Breakup 10 bound states PE+CN : Pre-equilibrium and compound nucleus followed by $\overset{\circ}{\mathcal{O}}$ evaporation Total=EBU+NEB+PE+CN 20 40 60 80 E_n (MeV)

209Bi(6Li,aX)

Elastic scattering

- data : S. Santra et al, Phys. Rev. C 83,
 034616 (2011).
- J. Cook potential, used for NEB
 - J. Cook, Nucl Phys A 388, 153 (1982).
- CDCC calculation
 - d+²⁰⁹Bi : Y. Han, Phys. Rev. C 74,
 044615 (2006). Removed surface term of imaginary part
 - a+²⁰⁹Bi : A. R. Barnett, Phys. Rev. C 9, 2010 (1974).

209Bi(6Li,aX)

Inclusive a

- data: S. Santra et al, Phys. Rev. C 85, 014612 (2012).
- EBU : CDCC calculation
 - forward angles: weak absorption ("distant trajectories")
- NEB : IAV model DWBA
 - dominate inclusive a
- TBU=EBU+NEB
 - overall agreement with data

⁶Li+²⁰⁹Bi:energy dependence of cross sections

M. Dasgupta et al, Phys. Rev. C 70, 024606 (2004).

15

Summary

- We have addressed the problem of the calculation of inclusive breakup: revisited the model proposed by Ichimura, Austern and Vincent
 - Using DWBA version of this formula for Nonelastic Breakup (NEB)
 - CDCC framework for Elastic Breakup (EBU)
- Calculation for deuteron and 6Li on several targets and at different energies showing a satisfactory agreement with the available data.
- This good agreement suggests that this approach could be useful to estimate the amount of incomplete fusion (ICF) from Nonelastic breakup

To be continued...

Thank you for your attention!!!

