An Overview of Resonance Measurements at the ALICE Experiment A. G. Knospe The University of Texas at Austin 23 June 2015

- What particles do we study?
 - Excited hadronic states
 - Short Lifetimes (~ Lifetime of Fireball)
 - For practical reasons, we prefer resonances with only charged particles at the end of the decay chain.

- What particles do we study?
 - Excited hadronic states
 - Short Lifetimes (~ Lifetime of Fireball)
 - For practical reasons, we prefer resonances with only charged particles at the end of the decay chain.

ALICE Resonance Program Knospe

Comprehensive studies: pp, p–Pb, Pb–Pb

4

for p–Pb and Pb–Pb

Results for pp, ongoing studies

Ongoing studies in pp, p–Pb, and Pb–Pb

Motivation

- pp and p–Pb collisions:
 - Baseline measurements for A–A
 - R_{pPb} : initial-state nuclear matter effects, system size dependence
- In-Medium Energy Loss:
 - R_{AA}: Study Nuclear Modification Factor (flavor dependence)
- Shapes of Particle p_{T} Spectra:
 - Hydrodynamics: particle masses determine shapes of spectra
 - Recombination: baryon/meson differences in shapes p_T spectra
- Chiral Symmetry Restoration:
 - expect mass shift and/or width broadening for resonances that decay when chiral symmetry (partially) restored
 - ALICE Results for K^{*0} and ϕ in Pb–Pb: mass and width show no significant modification and no centrality dependence
- Properties of Hadronic Phase...

Hadronic Phase

Knospe

- Reconstructible resonance yields may be changed by hadronic processes after chemical freeze-out:
 - Regeneration: pseudo-elastic scattering of decay products
 - e.g., $\pi K \rightarrow K^* \rightarrow \pi K$
 - Re-scattering:
 - Resonance decay products undergo elastic scattering
 - Or pseudo-elastic scattering through a different resonance (e.g. ρ)
 - Resonance not reconstructed through invariant mass

6

Hadronic Phase

- Reconstructible resonance yields may be changed by hadronic processes after chemical freeze-out:
 - Regeneration: pseudo-elastic scattering of decay products
 - e.g., $\pi K \rightarrow K^* \rightarrow \pi K$
 - Re-scattering:
 - Resonance decay products undergo elastic scattering
 - Or pseudo-elastic scattering through a different resonance (e.g. ρ)
 - Resonance not reconstructed through invariant mass
- Final yields at kinetic freeze-out depend on
 - Initial Yields: chemical freeze-out temperature
 - Elapsed time between chemical and kinetic freeze-out
 - Resonance lifetime
 - Scattering cross-sections of decay products
- Re-scattering and regeneration expected to be most important for p_T < 2 GeV/c (UrQMD)

ALICE Detector

8

Resonance Reconstruction Knospe

Invariant-mass reconstruction through hadronic decays

9

 Resonances measured in pp (0.9, 2.76, 7 TeV), p–Pb (5.02 TeV), and Pb–Pb (2.76 TeV) collisions

Ratios of Yields

- K*0/K
 - Central Pb–Pb: significantly suppressed w.r.t. peripheral, pp, p–Pb, or thermal model
 - Consistent with the hypothesis that re-scattering is dominant over regeneration
- - No strong dependence on centrality or collision system
 - φ lifetime ~10× longer than K*⁰,
 re-scattering effects not significant
 - Ratio for central Pb–Pb consistent with thermal model
- Ratios in p–Pb consistent with trend from pp to peripheral Pb–Pb

References:

pp: ALICE, *Eur. Phys. J.* C **72** 2183 (2012) Pb–Pb: ALICE, *Phys. Rev.* C **91** 024609 (2015) Thermal Model: J. Stachel *et al.*, SQM 2013

Ratios of Yields

- K*0/K
 - Values appear to follow same trend for both RHIC and LHC
 - Similar suppression of signal between pp and central A–A
- - Similar shapes in RHIC Au–Au and LHC Pb–Pb. Au–Au values tend to be larger than Pb–Pb, but consistent within uncertainties.
 - Ratio in d–Au fits into trend between pp and Au–Au (*cf.* p–Pb at LHC)
 - No strong energy or collisionsystem dependence between RHIC and LHC

¹² Properties of Hadronic Phase Knospe</sup>

- Simple model:
 - Assume that any K^{*0} that decays before kinetic freeze-out will be lost due to rescattering, neglect regeneration, neglect lifetime increase due to time dilation
 - Simple exponential decrease in yield (τ = 4.16 fm/c) :

(Final) = (Initial) × $\exp(-\Delta t/\tau)$

- Take K^{*0}/K in pp as initial value, central Pb–Pb as final value: lifetime of hadronic phase would be $\Delta t = 2.25 \pm 0.75$ fm/c
 - But since we neglect re-scattering and time dilation, treat this as a lower limit: <u>At > 1.5 fm/c</u>

¹³ Properties of Hadronic Phase Knospe</sup>

- Model of Torrieri, Rafelski, *et al.* predicts particle ratios as functions of chemical freeze-out temperature and lifetime of hadronic phase
- Model Predictions:

*References:

G. Torrieri and J. Rafelski, J. Phys. G 28, 1911 (2002)

- J. Rafelski et al., Phys. Rev. C 64, 054907 (2001)
- J. Rafelski et al., Phys. Rev. C 65, 069902(E) (2002)
- C. Markert *et al.*, arXiv:hep-ph/0206260v2 (2002)

¹⁴ Properties of Hadronic Phase Knospe</sup>

- Model of Torrieri, Rafelski, *et al.* predicts particle ratios as functions of chemical freeze-out temperature and lifetime of hadronic phase
- Model Predictions:

*References:

G. Torrieri and J. Rafelski, J. Phys. G 28, 1911 (2002)

J. Rafelski et al., Phys. Rev. C 64, 054907 (2001)

J. Rafelski et al., Phys. Rev. C 65, 069902(E) (2002)

C. Markert et al., arXiv:hep-ph/0206260v2 (2002)

¹⁵ Properties of Hadronic Phase Knospe</sup>

- Model of Torrieri, Rafelski, *et al.* predicts particle ratios as functions of chemical freeze-out temperature and lifetime of hadronic phase
- Model Predictions:

G. Torrieri and J. Rafelski, J. Phys. G 28, 1911 (2002)

- J. Rafelski et al., Phys. Rev. C 64, 054907 (2001)
- J. Rafelski et al., Phys. Rev. C 65, 069902(E) (2002)

C. Markert *et al.*, arXiv:hep-ph/0206260v2 (2002)

Mean p_{T} in Pb–Pb

- Mass ordering of $< p_T >$ observed
- <p_T> of K^{*0}, p, and φ is similar for central Pb–Pb
 Consistent with hydrodynamics
- $< p_T >$ splitting between p and ϕ for peripheral Pb–Pb
- Increase in $< p_T >$ from peripheral to central:

Mean p_{T} in p–Pb

- Approximate mass ordering in $< p_T >$
 - But $< p_T >$ of K^{*0} and ϕ greater than p and Λ
 - Is there a baryon/meson difference, or do resonances not obey mass ordering?
 - Same trend observed in pp

17

- High-multiplicity p–Pb reaches similar <p_T> values as central Pb–Pb
- <p_T> in p–Pb increases more rapidly than Pb–Pb as a function of multiplicity
- Differences in <p_>p_<
 due to difference in particle production mechanisms? Harder scattering in p_Pb? (PLB 727 371–380 (2013))

Particle Production

- p/π and Λ/K_{S}^{0} vs. p_{T} :
- What causes the shape of these ratios?
 - Particle masses (hydro)?
 - Quark content/baryon vs. meson (recombination)?
- To test: need a meson with a mass similar to the proton:
 - Nature has given us such a meson: φ

References:

Upper plot: ALICE, *Phys. Rev. C* 88 044910 (2013)
P. Bozek and I. Wyskiel-Piekarska, *Phys. Rev. C* 85 064915 (2012)
I. Karpenko *et al.*, *Phys. Rev. C* 87 024914 (2013)
R. Fries *et al.*, *Phys. Rev. Lett.* 90 202303 (2003)
Lower plot: ALICE, *Phys. Rev. Lett* 111 222301 (2013)

p/ϕ vs. p_T in Pb–Pb

- p/ϕ flat for central collisions for $p_T < 3-4$ GeV/c
 - Baryon/meson difference goes away if the two particles have the same mass. Consistent with hydrodynamical production
- Increasing slope for peripheral collisions, peripheral Pb–Pb similar to pp (7 TeV)
- Same trend seen in $\langle p_T \rangle$ (p and ϕ different for peripheral Pb–Pb)
- Different production mechanism for p, ϕ in central vs. peripheral?
- Extended hadronic phase with expansion velocity in central Pb–Pb

p/ϕ vs. p_T in p–Pb

- p/ϕ in low-multiplicity p–Pb similar to peripheral Pb–Pb and pp
- For $p_T > 1$ GeV/*c*: no multiplicity dependence in p–Pb
- For $p_T < 1$ GeV/*c*: decrease of p/ ϕ for high-multiplicity
 - Possible flattening of ratio: hint of onset of collective behavior in high-multiplicity p–Pb?

²² Nuclear Modification Factors Knospe</sup>

- In Pb–Pb:
 - Shape differences between p and φ due to differences in reference (pp) spectra
 - Strong suppression of all hadrons at high p_T

 $R_{AA}(p_{T}) = \frac{\text{Yield}(A-A)}{\text{Yield}(pp) \times \langle N_{coll} \rangle}$

- In p–Pb:
 - No suppression of ϕ w.r.t. pp for $p_T > 1.5$ GeV/c
 - Intermediate *p*_T: Cronin peak for p, smaller peak for φ
 - Possible mass dependence or baryon/meson differences in R_{pPb}

Conclusions

- Resonance Suppression:
 - Central Pb–Pb: K*⁰ suppressed (re-scattering) φ not suppressed (longer lifetime)
 - From K*0/K⁻ ratio: lower limit on lifetime of hadronic phase: 2 fm/c
 - p–Pb: K*⁰/K and ϕ /K ratios follow trend from pp to peripheral Pb–Pb
- Mean p_{T} :
 - $< p_T >$ in p–Pb and Pb–Pb follow different trends
 - − For central Pb–Pb: $< p_T >$ of K^{*0} ≈ p ≈ φ consistent with hydrodynamics
 - Mass ordering violated for pp, p–Pb, peripheral Pb–Pb:
 - $< p_T > \text{ of } K^{*0} \approx \phi > p \approx \Lambda$
 - Baryon/meson difference?
- p/φ ratio:
 - Flat vs. p_T for central Pb-Pb (p_T <3-4 GeV/c), consistent with hydrodynamics
 - Hint of flattening at low p_T for high-multiplicity p–Pb: possible onset of collective effects?
- Nuclear Modification Factors:
 - High- p_T suppression observed in central Pb–Pb (R_{AA}) but not in p–Pb
 - High- p_{T} behavior of resonances similar to stable hadrons

Outlook

- Other studies in pp, p–Pb, and Pb–Pb collisions:
 - $ρ^0$, Σ⁰, Σ^{*±}, Λ(1520), Ξ^{*0}
 - Allows study of modification of yields of several different resonances → better understanding of properties of hadronic phase
- Extension of K^{*0} and ϕ measurements to high p_T
- LHC Run 2 data at 13 TeV

Backup Material

K^{*0} Peaks and Spectra

ALI-PREL-71153

Mass and Width (Pb–Pb)

Knospe

No significant mass or width shifts observed. No centrality dependence of mass or width.

Non-equilibrium Model

- Chemical non-equilibrium statistical hadronization model
 Phys. Rev. C 88, 034907 (2013)
- Factors $\gamma_q \neq 1$ and $\gamma_s \neq 1$ that modify u/d and s pair yields w.r.t. equilibrium values
 - γ_q≠1 when "source of hadrons disintegrates faster than the time necessary to re-equilibrate the yield of light quarks present."
- Gives ~flat K*/K ratio, may be inconsistent with measured K*0/K⁻

πKp Blast-Wave Fits

Knospe

Combined fits of π[±], K[±], and (anti)protons in Pb–Pb collisions
 Phys. Rev. C 88 044910 (2013)

πKp Blast-Wave Fits

Knospe

Combined fits of π[±], K[±], and (anti)protons in Pb–Pb collisions
 Phys. Rev. C 88 044910 (2013)

Resonance Suppression

- Does K^{*0} suppression depend on p_T ? UrQMD: re-scattering strongest for p_T <2 GeV/c.
- Expected p_{T} distribution from blast-wave model:
 - Shape: parameters (T_{kin} , n, β) from combined fits of $\pi/K/p$ in Pb–Pb (*)
 - Normalization: K yield × K^{*0}/K ratio from thermal model (T_{ch} =156 MeV)
- Central: K^{*0} suppressed for p_T <3 GeV/c, but no strong p_T dependence
- Peripheral: K*⁰ not suppressed
- No suppression of ϕ

*PRC 88 044910 (2013)

Knospe

32

Mean p_T in A–A

- <p_T> appears to increase for more central Pb–Pb collisions w.r.t. peripheral and pp
- $< p_T >$ greater at LHC than RHIC
 - For K^{*0}: 20% larger For ϕ : 30% larger
- ALICE π,K,p spectra: global blast-wave fit shows ~10% increase in radial flow w.r.t. RHIC

Λ(1520)

- Reconstruction in pp 2.76 TeV, pp 7 TeV, p–Pb 5.02 TeV, and Pb–Pb 2.76 TeV
- Decay channel: ∧(1520)→pK⁻
 - Decay products identified using TPC and TOF
- Mass from invariant-mass fits in pp and p-Pb: good agreement with vacuum value
- More information can be found in this poster from Quark Matter 2014: https://indico.cern.ch/event/219436/session/2/contribution/197/material/poster/0.pdf

- Reconstruction in pp 7 TeV
- Decay channel: $\Sigma^0 \rightarrow \Lambda \gamma$
 - Photon identified through measurement of its conversion, and in PHOS (calorimeter)
- More information can be found in this poster from Quark Matter 2014: https://indico.cern.ch/event/219436/session/2/contribution/196/material/slides/0.pdf

