Electric Dipole Response of Nuclei and the Symmetry Energy of the Nuclear Equation of State Atsushi Tamii

Research Center for Nuclear Physics (RCNP) Osaka University, Japan

for RCNP-E282, E316 Collaborations

The 12th International Conference on Nucleus-Nucleus Collisions (NN2015), Catania, Italy, June 21st - 26th, 2015.

Contents

1. Introduction

Electric dipole response of nuclei: dipole polarizability and its relation to the neutron skin thickness, and symmetry energy

2. Experimental Method

Coulomb excitation by proton inelastic scattering at forward angles

3. Results and Discussions

²⁰⁸Pb and ¹²⁰Sn Constraints on the symmetry energy parameters

Symmetry Energy of Nuclear EOS is important in nuclear physics and nuclear-astrophysics

Core-collapse supernova

Langanke and Martinez-Pinedo

Neutron star cooling

Lattimer and Prakash, Science 304, 536 (2004).

Neutron star mass vs radius

Neutron star structure

http://www.astro.umd.edu/~miller/nstar.html

Nuclear Equation of State (EOS) at zero temperature

EOS for Energy per nucleon

$$\frac{E}{A}(\rho,\delta) = \frac{E}{A}(\rho,0) + S(\rho)\delta^{2} + \dots$$

$$\rho(r) = \rho_n(r) + \rho_p(r)$$
$$\delta(r) = \frac{\rho_n(r) - \rho_p(r)}{\rho_n(r) + \rho_p(r)}$$

Symmetry energy

 ρ_0 : Saturation Density ~0.16 fm⁻³

$$S(\rho) = J + \frac{L}{3\rho_0} (\rho - \rho_0) + \frac{K_{sym}}{18\rho_0^2} (\rho - \rho_0)^2 + \dots$$

S: symmetry energy at the saturation density L (slope parameter): density dependence Determination of the symmetry energy parameters especially L is becoming important.

 $L \propto P \propto R_{n-star}^4$ (Baryonic Pressure)

Nuclear Equation of State (EOS)

Prediction of the neutron matter EOS is much model dependent.

Neutron Skin and Density Dependence of the Symmetry Energy

Density dependence of the symmetry energy

Neutron Skin and Density Dependence of the Symmetry Energy

X. Roca-Maza et al., PRL106, 252501 (2011)

Correlation Between the Dipole Polarizability (α_D) and *L* (and the neutron skin thickness)

P.-G. Reinhard and W. Nazarewicz, PRC 81, 051303(R) (2010).

Electric Dipole Response of Nuclei

Electric Dipole (E1) Response of Heavy Nuclei

Probing the EM response of the target nucleus Real Photon Measurements, NRF or (y,xn) detector Decay γ or *n* is detected. (or xn)(or A-x) **Missing Mass Spectroscopy with Virtual Photon** Only the excitation part is probed. Scattered *p* is detected. \rightarrow total strengths independent of the decay channel detector Select $q \sim 0 \pmod{-0 \deg}$ (\mathbf{p}) Coulomb excitation dominates virtual photon EM Interaction is well known

А

(model independent)

Experimental Method

High-resolution polarized (p,p') measurement at zero degrees and forward angles Spectrometers in the 0-deg. experiment setup at RCNP, Osaka AT et al., NIMA605, 326 (2009)

B(E1): continuum and GDR region Method 1: Multipole Decomposition

Neglect of data for Θ>4: (p,p´) response too complex

Included E1/M1/E2 or E1/M1/E3 (little difference)

Grazing Angle = 3.0 deg

Comparison between the two methods

E1 Response of ²⁰⁸Pb and α_D

The dipole polarizability of ²⁰⁸Pb has been precisely determined.

AT et al., PRL107, 062502(2011)

Constraints

X. Roca-Maza et al. PRC88, 024316 (2013)

Symmetry Energy Parameters

Neutron Skin Thickness

Experimental Value = α_D

Constraint in the *J*-*L* plane

 $\Delta r_{n\mu} = 0.165 \pm (0.009)_{\text{expt}}$ $\pm (0.013)_{\text{theor}} \pm (0.021)_{\text{est}} \text{ fm}$ for the estimated *J*=31 ± (2)_{est}

Constraints on *J* and *L*

AT et al., EPJA50, 28 (2014).

I.B. Tsang et al., PRC86, 015803 (2012)

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet

Model (nuclear mass analysis) n-star: Neutron Star Observation cEFT: Chiral Effective Field Theory

QMC: S. Gandolfi, EPJA50, 10(2014).

I. Tews et al., PRL110, 032504 (2013)

See also C.J. Horowitz et al., JPG41, 093001 (2014)

Dipole Polarizability of ¹²⁰Sn^{T. Hashimoto et al.,} submitted

PDR in ¹²⁰Sn

A.M. Krumbholtz et al., PLB744, 7(2015)

The observed strength by (γ, γ') is significantly smaller than the present (p,p') data.

Dipole Polarizability of ¹²⁰Sn^{T. Hashimoto et al.,} submitted

Total: $\alpha_{\rm D} = 8.93 \pm 0.36 \ {\rm fm^3}$

Dipole Polarizability of ¹²⁰Sn and ²⁰⁸Pb^{T. Hashimoto et al.,}

Neutron Skin Thickness of ¹²⁰Sn

T. Hashimoto *et al.*, submitted

Plans in Near Future

- Measurements on ¹¹²Sn, ¹²⁴Sn and on ⁹²Zr, ⁹⁴Zr have been done in May-June, 2015.
- Data analyses on ⁹⁰Zr, ⁹⁶Mo, ⁴⁸Ca, and ¹⁵⁴Sm

RCNP-282 Collaboration

RCNP, Osaka University

A. Tamii, H. Matsubara, H. Fujita, K. Hatanaka, H. Sakaguchi Y. Tameshige, M. Yosoi and J. Zenihiro

IKP, TU-Darmstadt

P. von Neumann-Cosel, A-M. Heilmann, Y. Kalmykov, I. Poltoratska, V.Yu. Ponomarev, A. Richter and J. Wambach

KVI, Univ. of Groningen T. Adachi and L.A. Popescu IFIC-CSIC, Univ. of Valencia B. Rubio and A.B. Perez-Cerdan Sch. of Science Univ. of Witwatersrand J. Carter and H. Fujita iThemba LABS F.D. Smit Texas A&M Commerce C.A. Bertulani **GSI** E Litivinova

Dep. of Phys., Osaka University Y. Fujita

Dep. of Phys., Kyoto University T. Kawabata

CNS, Univ. of Tokyo K. Nakanishi, Y. Shimizu and Y. Sasamoto

CYRIC, Tohoku University M. Itoh and Y. Sakemi

Dep. of Phys., Kyushu University M. Dozono Dep. of Phys., Niigata Unive₃sity Y. Shimbara

T. Hashimoto⁺, A. M. Krumbholz¹, A. Tamii², P. von Neumann-Cosel¹, N. Aoi², O. Burda², J. Carter³, M. Chernykh², M. Dozono⁴, H. Fujita², Y. Fujita², K. Hatanaka², E. Ideguchi², N. T. Khai⁵, C. Iwamoto², T. Kawabata⁶, D. Martin¹, K. Miki¹, R. Neveling⁷, H. J. Ong², I. Poltoratska¹, P.-G. Reinhard⁸, A. Richter¹, F.D. Smit⁶, H. Sakaguchi^{2,4}, Y. Shimbara⁹, Y. Shimizu⁴, T. Suzuki², M. Yosoi¹, J. Zenihiro⁴, K. Zimmer¹

[†]Institute for Basic Science, Korea
¹IKP, Technische Universität Darmstadt, Germany
²RCNP, Osaka University, Japan
³Wits University, South Africa
⁴RIKEN, Japan
⁵Institute for Nuclear Science and Technology (INST), Vietnam
⁶Kyoto University, Japan
⁷iThemba LABs, South Africa
⁸Institut Theoretical Physik II, Universität Erlanen-Nürnberg, Germany
⁹CYRIC, Tohoku University, Japan

Summary

• Electric dipole response of ²⁰⁸Pb and ¹²⁰Sn have been precisely measured. Proton inelastic scattering was used as an electro-magnetic probe (relativistic Coulomb excitation).

 $\alpha_{\rm D(^{208}Pb)} = 20.1 \pm 0.6 \text{ fm}^3$ $\alpha_{\rm D(^{120}Sn)} = 8.93 \pm 0.36 \text{ fm}^3$

- Electric dipole polarizability (α_D) is sensitive to the difference between the proton and neutron distributions.
- The neutron skin thicknesses and the constraints on the symmetry energy parameters have been extracted with the help of mean field calculations.

