Nuclear Magics at Explosive Magnetization

NN 2015

V.N.Kondratyev

Bogolubov Laboratory of Theoretical Physics, JINR, 141980, Dubna, Russia

Physics Department, Taras Shevchenko National University of Kyiv, 03022 UA Kyiv, Ukraine

Before and after pictures of SN1987a

Hertzsprung- Russell (H-R) diagram

Stefan-Boltzmann Law for flux

luminosity L of a star with radius R & surface temperature T L~(Surface)T⁴~R²T⁴

Stellar Collapse and Supernova Explosion

Gravitational binding energy <u>E_b \approx 10^{53,5} erg \approx 20% M_{SUN} c²</u>

This is distributed as99%Neutrinos

1% Kinetic energy of explosion(1% of this into cosmic rays)

0.01% Photons, outshine host galaxy

Core-collapse supernova

*high-mass(M>8M_o)*star *Evolution* on HR diagram

explosive nucleosynthesis origin of Heavy Nuclides

Explosive nucleosynthesis

INTEGRAL VIRGO.UA

IBIS/ISGRI

Energy range	20 keV – 1 MeV
Energy resolution (FWHM)	7% at 100 keV
Detector area	960 cm2 at 50 keV

SPI		
Energy range	20 keV – 8 MeV	
Energy resolution (FWHM)	2.35 keV at 1.33 MeV	
Detector area	\sim 500 cm ²	

CAS A(3.4+0.3-0.1)kpc, TYCHO(2.2+/-0.3)kpc

Investigated Supernovas

NameCoordinateSN 1987A- 279.7 -31.9,Cas A- 111.7 -2.1,TYCHO- 120.1 +1.4,Vela Junior- 266.3 -1.2

Age 28 y 330 y 440 y ?

The scheme of the ⁴⁴Ti decay *Earth environment*

Cassiopeia A (3.4+0.3-0.1)kpc Energy range (keV): 20-62-72-82-100

F The direction (i.e., pixel number) dependence of the registered gamma-ray flux at different energy ranges: **20–62 keV - a, 62–72 keV - b, 72–82 keV – c**; for the angle region containing the Cassiopeia A SN remnant. The right bottom panel (d) represents the spectrum from the Cassiopeia A in the energy range 20–95 keV, the solid line shows the fit with the power law energy *E* dependence, .

SPI detector data

Fit results

$E = 1157.20 \pm 0.26 \ keV$ $FWHM = 3.1 \pm 0.7 \ keV$

 $Flux = (5.1 + -1.0) 10^{-5} \text{ph/cm}^2 \text{ s}$

T=1.5 Ms

mass of ⁴⁴Ti synthesized at Cassiopeia A explosion [VNK et al '*Nucleus2004'; PhAN (2009)*]

$$m = \frac{4\pi R^2 \cdot T_{1/2} \cdot M \cdot I}{\ln 2 \cdot N_a \cdot p} \cdot 2^{-\frac{t}{T_{1/2}}}$$

R-distance to the object, $T_{1/2}$ -the element half-life, N_a -theAvogadro constant, M-mola rmass, I- γ -quanta flux, p-quantum yield, t-remnant age

E, keV	$I \pm \Delta I$, 10 ⁻⁵ photons/cm ² s	m ± Δ m, 10 ⁻⁴ M _o
67.9 keV	6.0 ± 1.0	4.0 ± 0.7
78.3 keV	4.0 ± 1.0	2.6 ± 0.7
1157.1 keV	5.1 ± 1.1	3.3 ± 0.7

SN1987 A (50kpc) Energy range (keV): **20-62-72-82-100**

S.A.Grebenev et al Nature, 490, 373-375 (2012).

THEORY

$(0.02-2.5) imes 10^{-4}$ M_{\odot}

Thielemann, F.-K., Hashimoto, M. & Nomoto, K. Explosive nucleosynthesis in SN1987A. II. Composition, radioactivities, and the neutron star mass. *Astrophys. J.* **349**, **222–240** (**1990**)

Woosley, S.E., & Hoffman, R. D. 57Co and 44Ti production in SN1987A. *Astrophys. J.*, *368, L31-L34* (1991).

State Equation (SE): Nuclear Matter vs Regular Liquid (Noble Gas)

Van der Waals SE (1875) & Nuclear Matter SE (1983)(relative units: V/Vc; p/pc; T/Tc)

Instability region

 $\left. \partial p \right/ \partial V \right|_{\tau} > 0$

H. Jaqaman et al., Phys. Rev. C 27 (1983)2782

Symmetric nuclear matter: Phase diagram

explosion proceeds through convection processes

V-sphere

magneto-rotational instabilities & dynamo-action → amplifying

Magnetic fields up to strengths hundred *tera-tesla*

The magnetic field evaluation

(S.G.Moiseenko, G.S.Bisnovatyj-Kogan, N.V.Ardeljan, MNRAS 370 (2006) 501)

Magnetic field estimates

predominant energy component of shock wave $E_{\rm S}$ originates from the magnetic pressure

$$R_{v}^{2}\Delta R \sim 2E_{s} \sim 10^{51.5} \text{ ergs}$$

 $R_{v} \sim 40 \text{Km}; \Im R \sim 1 \text{Km}$ 200 $B_{v} \sim 10^{1} - 10^{2}$ TeraTesla 9.6 8.9 8.2 (km $B(R) \sim B_{v} R_{v} / R$ 6.8 6.1 -1005.4 -200300 400

x (km)

Magnetic field estimates

Magnetic and gravitational forces

 $dB_v^2/dR \sim 8\square GM n(R)/R^2$

 $4\square R^2 n(R) = dM/dR$

 $B \sim 10^{1.5}$ TeraTesla (M/M_o)(10km/R)²

 $R_{v} \sim 40$ Km; $\Re R \sim 1$ Km

 $B_v \sim 10^1 - 10^2$ TeraTesla

Magnetic fields in HIC

Magnetic field is induced through the axial anomaly

Non-zero angular momentum (or equivalently magnetic field) in heavy-ion collisions

B~10^{1.5}TeraTesla $(E/E_o)^{1/2}$

NUCLEAR STATISTICAL EQUILIBRIUM in Ultra-Strong Magnetic Fields

- Entropy S extremum \rightarrow $\overrightarrow{IS} = \underbrace{i}_{i}$
- Nuclear composition at temperature T

Binding Energy **B**

spin-magnetic part in partition function

Nuclear Shell Effects at Ultra-Strong Magnetic Fields

V.N.K. //PRL 2002. V.88, 221101 // J.Nucl.Sci.Technol. V.1 Sup.2. P.550 // J.Nucl.Radiochem.Sci. 2002. V.3. P.205 // PRC 2004 V.69, 038801/ЯΦ. 2012

$$N = \int_{-\infty}^{q_{\pi}} de \rho e$$

Nucleons

Binding Energy Level density

$$B = \int_{n} dz = B_{\text{LDM}} + B^{\text{sh}}$$

$$\rho = \sum_{n} \delta(\varepsilon - \varepsilon_{n}) = \rho_{\text{sm}} + \rho^{\text{sh}}$$

With Single particle levels \mathcal{E}_n filled up to the Fermi energy \mathcal{E}_F

the Hartree self-consistent mean field approach in magnetic field : h

- Single particle Hamiltonian
- $\mathbf{H} = \mathbf{H}_{\mathbf{MF}} + (\mathbf{so})^*(ls) + (Magnetic terms)$
- Pauli–spin $(S) \rightarrow$ M (hS)
- Landau–orbital $(l) \rightarrow -M(hl)$:protons

Neutrons

Магнитное поле

Binding energy of even-even symmetric nuclei *at magnetic fields h*

relative yield y=Y(H)/Y(0)⁵⁶Ni(solid) i ⁴⁴Ti(dashed line)

SUMMARY

- •We analyze the synthesis and decay of ⁿ nuclides in SNRs
- •Obtained the spectra and flux for the specific lines of decay products

SUMMARY

- Magnetism of Atomic Nuclei Thermodynamic formalism
- Magnetic field effect on Nuclear Shell Structure Phase-shift in shell oscillations of Nuclear Masses
- Pauli type Paramagnetic Response
- Landau-type Orbital Magnetism
- Magnetic fields of Tera-Tesla shift Nuclear Magics of Iron region towards Smaller Masses approaching Ti-44
- Enhancement in Yield at nucleosynthesis