

Study of fusion reactions with MUSIC

Melina Avila

Argonne National Laboratory

Nucleus Nucleus 2015 June 23, 2015

Outline

- Motivation
- The MUSIC detector
- Previous and recent results
- Perspectives and conclusions

Motivation

Fusion reactions play and important role in nature

- Crucial for the production of heavier elements in stars.
- Play fundamental role to understand X-ray binaries where superbursts have been observed.
- For fundamental nuclear effects.
- Important to have a good understanding of the underlying reaction mechanism.

Nuclear Reactions during X-ray bursts

Nuclear Reactions during X-ray bursts

X-ray Superbursts

20

Previous studies of fusion reactions involving Radioactive beams

E_{cm} (MeV)

Study of (α,p) via the time-inverse reaction

Difficulties associated with previous methods

- Many of these studies involve radioactive beams.
- Low beam intensities.
- Long time to measure a single energy point.
- Difficult to tune the beam and to change energy.

The MUSIC detector

Multi-Sampling Ionization Chamber

- Highly efficient because segmented anode allows to measure large energy range with a single energy beam.
- We measure the energy losses along a particle track.
- No additional monitors for absolute normalization.

Dimensions:

30 cm (L) x 10 cm(w) x 20 cm (H)

Counting gases:

He, CH₄, Ne, Ar

Event-by-event analysis

Event-by-event analysis

Experimental results

^{10,12,13,14,15}C + ¹²C experimental campaign

- ¹⁰C: ¹H(¹⁰B,¹⁰C)n Rate~500/s
- ¹²C
- ¹³C
- ¹⁴C
- ¹⁵C: ²H(¹⁴C,¹⁵C)p Rate ~2000/s

¹²C + ¹³C fusion – test measurement

¹²C + ¹³C fusion – test measurement

Radioactive beam: ¹²C + ¹⁵C fusion

Results: Fusion of ¹²C +

P. F.F Carnelli et al., PRL 112, 192701 (2014)

- Can measure ~12 energies in one experiment.
- Good agreement with theory.

Oscillations above the barrier in fusion data

H. Esbensen PRC 85, 064611 (2012) N. Rowley et al., PRC 91, 044617 (2015)

Oscillations above the barrier in fusion data

Oscillations above the barrier in the fusion of ${}^{28}Si + {}^{28}Si$

G. Montagnoli^{a,*}, A.M. Stefanini^b, H. Esbensen^c, L. Corradi^b, S. Courtin^d, E. Fioretto^b, J. Grebosz^e, F. Haas^d, H.M. Jia^b, C.L. Jiang^c, M. Mazzocco^a, C. Michelagnoli^a, T. Mijatović^f, D. Montanari^a, C. Parascandolo^a, F. Scarlassara^a, E. Strano^a, S. Szilner^f, D. Torresi^a $\frac{700}{600} \begin{bmatrix} 1 & Ch6 W_0 = -4 & \dots & Ch6 W_0 = -2 & \dots & Ch6 & W_0 = -2 & \dots &$

Ongoing Neon Campaign

- ¹²C+²⁰Ne
- ²⁰Ne+²⁰Ne
- ²²Ne+²⁰Ne
- ²²Ne+²²Ne
- ²²Ne+²⁴Ne
- ²⁰Ne+²⁴Ne

Neon campaign results

Δ

Neon campaign results

Neon campaign results

What else can we measure?

The ¹⁷O(α,n)²⁰Ne reaction with MUSIC

J.K. Bair, et al. Phys. Rev. C 7, 1356 (1973).

The ¹⁷O(α,n)²⁰Ne reaction with MUSIC

J.K. Bair, et al. Phys. Rev. C 7, 1356 (1973).

The ¹⁷O(α,n)²⁰Ne reaction with MUSIC

What about (α, p) ?

The ²³Na(α,p) reaction with MUSIC!

The ²³Na(α,p) reaction with MUSIC!

Conclusions

- Fusion reactions play an important role. Many of this reactions involve radioactive beams.
- The high efficient detector MUSIC measures excitation functions with a single beam energy.
- Test experiments with ^{12,13}C are in very good agreement with previous data.
- Measured for the first time, excitation functions for ${}^{12}C + {}^{10,14,15}C$ with radioactive carbon isotopes which are of interest in nuclear astrophysics.
- Measured ^{20,22}Ne+^{20,22}Ne excitation functions.
- New possibilities measuring (α,n) and (α,p) reactions.

Collaborators

K.E. Rehm, S. Almaraz-Calderon, P.F.F. Carnelli (TANDAR), B. DiGiovine, H. Esbensen, D. Henderson, C.R. Hoffman, C.L. Jiang, B.P. Kay, J. Lai (LSU), O. Nusair, R.C. Pardo, M. Paul, D. Santiago-Gonzalez (LSU), R. Talwar, C. Ugalde

Thanks for your attention !

Outline

- Motivation
- The MUSIC detector
- Previous and recent results
- Perspectives and conclusions

Motivation

Fusion reactions play and important role in nature

- Crucial for the production of heavier elements in stars.
- Play fundamental role to understand X-ray binaries where superbursts have been observed.
- For fundamental nuclear effects.
- Important to have a good understanding of the underlying reaction mechanism.

Difficulties associated with previous methods

- Many of these studies involve radioactive beams.
- Low beam intensities.
- Long time to measure a single energy point.
- Difficult to tune the beam and to change energy.

Δ

Multi-Sampling Ionization Chamber

Dimensions:

30 cm (L) x 10 cm(w) x 20 cm (H)

Counting gases:

He, CH₄, Ne, Ar

Ongoing Neon Campaign

- ¹²C+²⁰Ne
- ²⁰Ne+²⁰Ne
- ²²Ne+²⁰Ne
- ²²Ne+²²Ne
- ²²Ne+²⁴Ne
- ²⁰Ne+²⁴Ne

Conclusions

- Fusion reactions play an important role. Many of this reactions involve radioactive beams.
- The high efficient detector MUSIC measures excitation functions with a single beam energy.
- Test experiments with ^{12,13}C are in very good agreement with previous data.
- Measured for the first time, excitation functions for ${}^{12}C + {}^{10,14,15}C$ with radioactive carbon isotopes which are of interest in nuclear astrophysics.
- Measured ^{20,22}Ne+^{20,22}Ne excitation functions.
- New possibilities measuring (α,n) and (α,p) reactions.

Collaborators

K.E. Rehm, S. Almaraz-Calderon, P.F.F. Carnelli (TANDAR), B. DiGiovine, H. Esbensen, D. Henderson, C.R. Hoffman, C.L. Jiang, B.P. Kay, J. Lai (LSU), O. Nusair, R.C. Pardo, M. Paul, D. Santiago-Gonzalez (LSU), R. Talwar, C. Ugalde

Thanks for your attention !

Go to "View | Header and Footer" to add y