

Production cross section measurement and identification of new isotopes in the vicinity of ¹⁰⁰Sn

Igor Čeliković

Institute "Vinča", Belgrade, Serbia GANIL, Caen, France Marek Lewitowicz

GANIL, Caen, France

&

RIBF009 Experiment Collaboration

General motivation: The N=Z ¹⁰⁰Sn region

The main objectives of this study:

- Shell structure and single particle energies
- pn interaction in isospin symmetric matter
- Gamow-Teller β+/EC decay
- Proton and alpha decay from ground and excited states
- Astrophysical rp-process

H Grawe et al., Phys. Scripta, T56 (1995) 71-78.

C.Hinke et al., Nature 428 (2012) 341.

- Production cross section
 - Energy dependence of ¹⁰⁰Sn production cross-section?
 - Effects of secondary reactions
 - Checking models used for CS predictions
- Identification of new isotopes and proton emitters
 - Mapping the proton drip-line
 - Testing different mass models

Experimental setup:

Particle identification and new isotopes

- $\Delta E B\rho TOF$ method:
 - from ΔE and TOF $\rightarrow Z$
 - from Bp and TOF \rightarrow A/Q
- A/Q and Z confirmation by characteristic γ-lines from
 ^{98m}Cd and ^{96m}Pd
- PID around ¹⁰⁰Sn: full statistics (irradiation with 30 pnA during 203 h)

A/Q^{2.02}

2 04

1 99

Production cross section:

- Transmission: average of Monte Carlo and Distribution Method from LISE++
- CS deduced for transmission > 5%
- Correction on effect of secondary reactions in target

¹⁰⁰Sn cross section: discrepancy between RIKEN, GSI and EPAX

- discrepancy between GSI and RIKEN ¹⁰⁰Sn production cross sections
- possible and/or target thickness dependence

Experiment	Be target (mm)	Energy (MeV/u)	Cross section (pb)	
			Uncorrected	Corrected on Sec. Reactions (EPAX3.01)
This work	4	345	1.54±0.24±0.46	1.33 ±0.21±0.40
H. Suzuki et al.,	4	345	0.86±0.2±0.43	0.74 ±0.17±0.37
TEST exp.	8 + 0.2 W	345	1.5±0.6±0.45	1.1 ±0.44±0.33
C. Hinke et al,	21.6	1000	5.8 ± 2.1	2.8 ± 1.0
EPAX 3.01			5.76	
EPAX 2.15			7.43	

H.Suzuki, et al, NIMB 317 (2013) 756, C.B.Hinke, et al, Nature 486 (2012) 341, TEST exp.: I. Celikovic, PhD Thesis, GANIL 2013, EPAX 2.15: K. Sümmer, B. Blank, Phys. Rev. C 61, 034607 (2000). EPAX 3.01 K. Sümmer, Phys. Rev. C 86, 014601 (2012).

- reduced discrepancy when correction on sec. reactions in target applied
- growing discrepancies in neutron deficient region call for new EPAX parameterization

New proton emitters:

M. Lewitowicz.

New proton emitters: ⁹³Ag

•Proton separation energies S_p deduced:

- from measured half-lives,
- using simple model of proton emission (S. Delion et al., PRL96 (2013) 072501)
- assuming proton is emitted from $\pi g_{9/2}$ orbital

New proton emitters: ⁸⁹Rh and lower limit for ⁹⁷In

$$T_{1/2}(^{89}\text{Rh}) = 119^{+17}_{-7} \text{ ns}$$

$$S_p(^{89}Rh) = -1012_{-3}^{+7} \text{ keV}$$

Lower limit of the half-life of ⁹⁷In

- A drop in number of detected numbers of ⁹⁷In not observed
- Assumption: drop will be observed if detected number of $^{\rm 97}$ In would be at least 2σ of the number of events

 $T_{1/2}({}^{97}\text{In}) > 3 \ \mu\text{s}$ β -T_{1/2}(${}^{97}\text{In}) = 31\text{ms}$ - preliminary

Systematics of N=Z-1 proton emitters from $\pi g_{9/2}$

Conclusions:

- Influence of secondary reactions in target on cross section measurements
- Cross sections in good agreement between diff. experiments
- Discovery of new isotopes: ⁹⁶In, ⁹⁴Cd, ⁹²Ag, ⁹⁰Pd
- The p drip-line crossed for odd-Z nuclei below ¹⁰⁰Sn
- Discovery of new proton emitters: ⁹³Ag, ⁸⁹Rh
 - deduced half-lives
 - S_p estimated using simple model of proton emission
- Estimated lower limit of the half-life of ⁹⁷In
- Demonstrated stabilizing effect of the N=50 shell closure

(from the systematics of the half-lives of N=Z-1 nuclei)

I. Čeliković^{1,2}, M. Lewitowicz¹, G. de France¹, R. Gernhäuser³, R. Krücken⁴, S. Nishimura⁵, H. Sakurai⁶, H. Baba⁵, B. Blank⁷, A. Blazhev⁸, P. Boutachkov⁹,
F. Browne¹⁰, P. Doornenbal⁵, T. Faestermann³, Y. Fang¹¹, J. Giovinazzo⁷, N. Goel⁹, M. Gorska⁹, S. Ilieva¹², T. Isobe⁵, A. Jungclaus¹³, G. D. Kim¹⁴, Y.-K. Kim¹⁴,
I. Kojouharov⁹, N. Kurz⁹, G. Lorusso⁵, D. Lubos³, K. Moschner⁸, I. Nishizuka¹⁵, J. Park⁴, Z. Patel¹⁶, M. Rajabali⁴, S. Rice¹⁶, H. Schaffner⁹, L. Sinclair¹⁷, P. A. Söderström⁵, K. Steiger³, T. Sumikama¹⁵, Z. Wang⁴, H. Watanabe¹⁸, J. Wu¹⁹, and Z. Xu⁶

¹Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Boulevard H. Becquerel, 14076 Caen, France ² Institute of Nuclear Sciences "Vinča", University of Belgrade, Belgrade, Serbia ³ Physik Department E12 Technische Universität München D-85748 Garching, Germany ⁴ TRIUMF Accelerating Science for Canada Vancouver BC, V6T 2A3, Canada ⁵ RIKEN Nishina Center 2-1 Hirosawa Wako Saitama 351-0198, Japan ⁶ University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033, Japan ⁷ CEN Bordeaux-Gradignan Le Haut-Vigneau F-33175 Gradignan Cedex, France ⁸ Institute of Nuclear Physics University of Cologne D-50937 Köln, Germany ⁹ GSI Helmholtzzentrum für Schwerionenforschung GmbH D-64291 Darmstadt, Germany ¹⁰ University of Brighton Brighton BN2 4GJ United Kingdom ¹¹ Osaka University, Osaka, Japan ¹² Technische Universität Darmstadt D-64289 Darmstadt, Germany ¹³ Instituto de Estructura de la Materia IEM-CSIC E-28006 Madrid, Spain ¹⁴ Rare Isotope Science Project Institute for Basic Science Daejeon 305-811, Republic of Korea ¹⁵ Department of Physics Faculty of Science Tohoku University Sendai 980-0845, Japan ¹⁶ Department of Physics University of Surrey Guildford GU2 7XH, United Kingdom ¹⁷ University of York York YO10 5DD, United Kingdom ¹⁸ Beihang University Beijing 100191, China ¹⁹ Department of Physics Peking University Beijing 100871, China

Thank you for your attention