g-factor measurements of isomeric states in ¹⁷⁴W

Marco Rocchini

- Physical Motivation
- Experiment
- Results
- Level's
 Configurations
- Conclusions

K-Isomers: characterized by big orientation variations of the nuclear spin with respect to the nucleus symmetry axis $K_{f} \leftarrow Transition of order$

 K-hindered transition (△K>l): is useful to define the degree of K-forbiddenness v and the hindrance factor F

 K_i

degree of K-forbiddenness: $v = \Delta K - l$

Symmerty axis

hindrance factor: $F = \frac{T_{1/2}}{T_{1/2}^W}$

 $\Delta K = |K_f - K_i| \le l$

Marco Rocchini

Marco Rocchini

12th International Conference on Nucleus Nucleus 2015 (21-26/06/2015)

- Physical **Motivation**
- Experiment
- Results
- Level's Configurations
- Conclusions

ELOREA, NFN 12⁺ isomer: the most intense transition is an *E2* at 1879*keV*, with ν =10 (g) Band 18 Band 17 Band 20 Band 19 Band 16 Band 15 Band 8 Band 7 Band 1 272 199 128 ns 13-289 16+ 528 12 238 612 11 240 1328 14^{+} 230 1879 596 158 ns 12^{+} 1194

249

5(-)

214

5(-)

 γ -tunneling: tunneling of the nucleus through a barrier of γ degree of freedom, along a line of constant β deformation

g-factor measurements: information on the level's qp-configurations

Marco Rocchini

12th International Conference on Nucleus Nucleus 2015 (21-26/06/2015)

 10^{+}

Marco Rocchini

g-factor measurements of isomeric states in ¹⁷⁴W

- Physical Motivation
- Experiment
- Results
- Level's Configurations
- Conclusions
- Choice: CASCADE [1] code $162Dy(16O,4n)^{174}W @ 84MeV$ • B1.1% of the total cross section 162-Dy• 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 000
 • 0
- Reaction

🕭 171Hf 3na

175Ta 2ng

172Hf 2n

• Pulsed beam: 2ns pulse for a good identification of the prompt peak and 800ns cycling time to observe the complete decay without overlap form different beam pulses

• Target

1

75

Cross

Pb layer, for stopping tungsten Heated to 400*K* Temperature control

Energy [MeV]

85

90

80

[1] Puhlohfer, Nucl. Phys. A, 280 267 (1977)

Marco Rocchini

ΙΝΓΝ

- Physical Motivation
- Experiment
- Results
- Level's
 Configurations
- Conclusions

Marco Rocchini

Detectors: 4 HPGe placed at ±45°, ±135° respect to the beam axis, since *W*(*t*,*θ*,*B*) is symmetric for a rotation of 180° the intensities of HPGe 1-3 and 2-4 can be summed for doubling the statistics

• Magnetic field: $B=(14.65\pm0.05)kG$, set at this value for observing 2-3 complete oscillations in the range of $3T_{1/2}$

- Physical Motivation
- Experiment
- Results
- Level's Configurations
- Conclusions

 New digital acquisition system: we have installed TNT2 cards based on Moving Time Deconvolution Window

Marco Rocchini

12th International Conference on Nucleus Nucleus 2015 (21-26/06/2015)

- Physical Motivation
- Experiment
- Results
- Level's
 Configurations
- Conclusions

INFN

• Delayed transitions in coincidence with 1879*keV*

• g-factor

 Mean life of 12+: confirmed literature value τ¹²⁺=186(12)ns (Tandel et al., Phys. Rev. C, 73 044306 (2006))

J.OREA

$$g^{12+}=0.304(7)$$

The systematic contributions are still under analysis, so probably the error is little underestimated

Marco Rocchini

12th International Conference on Nucleus Nucleus 2015 (21-26/06/2015)

Results

 12^{+}

- Physical Motivation
- Experiment
- Results
- Level's Configurations
- Conclusions

Marco Rocchini

12th International Conference on Nucleus Nucleus 2015 (21-26/06/2015)

g-factor measurements of isomeric states in ¹⁷⁴W

NFN

- Physical Motivation
- Experiment
- Results
- Level's
 Configurations
- Conclusions

Level's Configurations

• The level's qp-configuration are given by combination of single orbitals near the Fermi surfaces

• For ¹⁷⁴W: $\beta_2=0.271$, $\beta_4=-0.007$, $\gamma=0^{\circ}$ (Tandel et al., *Phys. Rev. C*, **73** 044306 (2006))

Marco Rocchini

 Physical Motivation

• Experiment

- Results
- Level's
 Configurations

Conclusions

Level's Configurations

• gyromagnetic factor for a well define K state [1]

$$K > 1/2: g = g_R + (g_K - g_R) \frac{K^2}{J(J+1)}$$

 $K = 1/2: \quad g = g_R + \frac{g_K - g_R}{4J(J+1)} (1 + (2J+1)(-1)^{J+1/2}b)$

b magnetic decoupling parameter [2]

rotational part

IFN

 $g_R=0.25(5)$

obtained from the known gyromagnetic factor of the 2⁺ levels in the isotopes of Tungsten [3] (confirmed by measurement in ¹⁷⁶W [4])

intrinsic part (*i* is number of considered orbitals)

 $Kg_K = \Sigma_i \Omega_i g_{\Omega_i}$

obtained from the experimental g-factors in the near nuclei with a single nucleon in the valence orbital

[1] Bohr A. & Mottelson B.R., "Nuclear Structure, Volume II: Nuclear Deformations", World Scientific, Singapore, (1998)
[2] Stuchbery et al., Nuclear Phys. A, 669 27 (2000)

[3] Firestone R.B. & Shirley V.S., *"Table of Isotopes"*, John Wiley, New York, (1996), Appendix E, Nuclear Moments
[4] Ionescu-Bujor et al., *Phys. Lett. B*, **541** 219 (2002)

Marco Rocchini

12th International Conference on Nucleus Nucleus 2015 (21-26/06/2015)

g-factor measurements of isomeric states in ¹⁷⁴W

NFN

- Physical Motivation
- Experiment
- Results
- Level's Configurations
- Conclusions

Level's Configurations 12+

• Level configuration: spin 12⁺ and similar energy (3516keV) [1], [2]

proton orbitals	neutron orbitals	g _{calc} (12+)
7/2+[404], 9/2-[514]	1/2-[521], 7/2+[633]	0.678(13)
5/2+[402], 7/2+[404]	5/2-[512], 7/2-[514]	0.533(11)
5/2+[402], 7/2+[404]	5/2+[642], 7/2+[633]	0.403(11)
	5/2-[512], 7/2-[514], 5/2+[642], 7/2+[633]	-0.161(9)

- Experimental value measured in this work: g12+=0.304(7)
- The level's configuration might not be a pure 4qp-configuration

[1] Tandel et al., *Phys. Rev. C*, **73** 044306 (2006)
[2] Crowell et al., *Phys. Rev. C*, **53** 1173 (1996)

Marco Rocchini

- Physical Motivation
- Experiment
- Results

Level's Configurations

• Conclusions

Conclusions

- Upgrade to GAMIPE apparatus, a modern set-up for g-factor and Q-value measurements at LNL in Legnaro (Pd, Italy)
- Confirmed mean life value for 12^+ level: $\tau^{12+}=180(30)ns$
- First measure of the g-factor for the level 12^+ : $g^{12+}=0.304(7)$
- The level 12⁺ might not be a pure 4-qp configuration
- The analysis on the level 8- is still ongoing

Thanks to all colleagues:

NFN

M. Rocchini¹, A. Nannini¹, G. Benzoni², B. Melon¹, P.R. John³, M. Ottanelli¹, A. Perego¹, R. Avigo², N. Blasi², G. Bocchi², S. Bottoni², A. Bracco², F. Camera², S. Ceruti²,
F.C.L. Crespi², A. Giaz², S. Leoni², B. Million², A.I. Morales², L. Pellegri², O. Wieland²,
D. Bazzacco³, R. Menegazzo³, D. Mengoni³, C.A. Ur³, V. Modamio⁴, D.R. Napoli⁴, J.J. Valiente-Dobon⁴, A. Gottardo⁵, C. Michelagnoli⁶, G. Georgiev⁷

¹ Università degli Studi e INFN sezione di Firenze, Firenze, Italy
 ² Università degli Studi e INFN sezione di Milano, Milano, Italy
 ³ Università degli Studi e INFN sezione di Padova, Padova, Italy
 ⁴ INFN Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy
 ⁵ CNRS, Paris, France ⁶ GANIL, Caen, France ⁷ CSNSM, Orsay, France

Marco Rocchini