

AGB star nucleosynthesis: when new data from nuclear physics help to solve puzzles

> Sara Palmerini LNS – INFN, Catania, Italy

+ Low mass star contribution to the chemical evolution of galaxies

 50% of nuclei are produce by low mass stars.

from: M. Wiescher, JINA lectures on Nuclear Astrophysics

The lower is the mass, the larger is the number of stars

IRC+10216 C-star is the brightest object on the sky at at mid infrared

+ Grains & challenges from RGB & AGB stars

Grains & challenges from RGB & AGB stars

+ Reaction rates from determined by THM

ωγ (eV)	THM	Chafa et al. 2007	NACRE
65 keV	$3.4 \pm 0.6 \ 10^{-6}$	4.7±0.8·10 ⁻⁹	5.5 ^{+1.8} -1.0 ·10 ⁻⁹
183 keV	1.16 ± 0.1 10 ⁻³	$1.66 \pm 0.1 \ 10^{-3}$	5.8 ^{+5.2} -5.8 ·10 ⁻⁵

ωγ (eV)	ТНМ	NACRE
20 keV	8.3 +3.8 -2.6 10-19	6 ⁺¹⁷ ₋₅ 10 ⁻¹⁹
90 keV	$1.8 \pm 0.3 \ 10^{-7}$	$1.6 \pm 0.5 \ 10^{-7}$

+ ¹⁸O(p, α)¹⁵N and the challenging Nitrogen isotopic ratio in SiC grains

+ ¹⁷O+p reaction rates and Oxide grains

- Low mass RGB stars (M_{\star} <2 M_{\odot}) are progenitor of group 1 grains
- Extra-mixing in AGB stars account for isotopic composition of Group 2 oxide grains

+ ¹⁷O+p reaction rates and Oxide grains

- Mass range of stellar progenitors of group 2 oxide grains is $1M_{\odot} < M_{\star} < 1.2M_{\odot}$
- Group 2 grains might be divided in 2 subgroups because of the progenitor mass

+ Aluminum isotopic ratio: a possible solution from nuclear physics?

How to reach ²⁶Al/²⁷Al>0.02 shown by part of group 2 grains?

NN2015

+ Aluminum isotopic ratio: a possible stellar solution from nuclear physics

- The measurement of
 ²⁵Mg(p, γ)²⁶Al excludes that a solution coming from nuclear data (Strieder et al. 2012)
- Extra-mixing Convective

envelope

H-burning shell

What about the mixing profile?

15

A new estimation of ⁷Be life-time in Stellar Conditions Li

PHYSICAL REVIEW

VOLUME 128, NUMBER 3

NOVEMBER 1, 1962

Electron Capture and Nuclear Matrix Elements of Be⁷[†] John N. Bahcall*

(Received June 28, 1962)

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY-MARCH 2011

Solar fusion cross sections. II. The pp chain and CNO cycles

E.G. Adelberger, A. García, R.G. Hamish Robertson, and K.A. Snover

$$R(^{7}\text{Be} + e^{-}) = 5.60(1 \pm 0.02) \times 10^{-9} (\rho/\mu_{e}) \times T_{6}^{-1/2} [1 + 0.004(T_{6} - 16)] \text{ s}^{-1}, \qquad (40)$$

valid for $10 < T_6 < 16$, is identical to Eq. (26) of Solar Fusion I. Here ρ is the density in units of g/cm³, T₆ is the

The Poisson–Boltzmann approach (the other "classical" one) does not hold outside the conditions of the solar nucleus. In particular, at lower temperatures and densities, where a large part of the Li production occurs (because the competing proton captures on ⁷Be become ineffective)

THE ASTROPHYSICAL JOURNAL, 764:118 (12pp), 2013 February 20 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/764/2/118

THEORETICAL ESTIMATES OF STELLAR e⁻ CAPTURES. I. THE HALF-LIFE OF ⁷Be IN EVOLVED STARS

S. Palmerini

Sun:

RGB & AGB:

 $T = 5 \times 10^7 - 2 \times 10^6 K$

 $\rho = 0.01 - 100 \text{ g/cm}^3$

 $T = 1.57 \times 10^7 K$

 $\rho = 160 \text{ g/cm}^3$

S. SIMONUCCI^{1,2}, S. TAIOLI^{2,3,4,5}, S. PALMERINI⁶, AND M. BUSSO^{2,7} ¹ Department of Physics, University of Camerino, Camerino, Italy ² Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia, Italy; stefano.simonucci@unicam.it ³ Interdisciplinary Laboratory for Computational Science, FBK-CMM and University of Trento, Trento, Italy; taioli@fbk.eu

In nuclear astrophysics

- Sometimes solutions come from nuclei (¹⁷O/¹⁶O in grains)
- Sometimes solutions come from stars (²⁶Al/²⁷Al in grains)
- Other times we do not know yet (¹⁴N/¹⁵N in grains and the Li problem)
- In any case it is necessary to collaborate

GRAZIE!

THANK YOU!