AGB star nucleosynthesis: when new data from nuclear physics help to solve puzzles

Sara Palmerini
LNS – INFN, Catania, Italy
Low mass star contribution to the chemical evolution of galaxies

- Supernovae stars produce the most part of nuclei in the galaxies.
- 50% of nuclei are produced by low mass stars.

The lower is the mass, the larger is the number of stars.

from: M. Wiescher, JINA lectures on Nuclear Astrophysics
Low mass star contribution to the chemical evolution of galaxies

- The lower is the mass, the larger is the number of stars
- $M < 3M_\odot$

IRC+10216 C-star is the brightest object on the sky at mid infrared

NN2015
Grains & challenges from RGB & AGB stars

C/O ≥ 1
SiC grains

C/O < 1
Oxide grains

Hoppe NewAR 2002

Zinner 2004

S. Palmerini
Grains & challenges from RGB & AGB stars

C/O ≥ 1 SiC grains

C/O < 1 Oxide grains

S. Palmerini

Hoppe NewAR 2002

Zinner 2004

NN2015
Energy range of the H-burning shell

Temperature:
8.3 10^7 K \leftarrow 3 10^6 K

Conversion Factors Between Units of Energy
3.45 keV \leftarrow 0.25 keV

Most effective energy (17O +p reactions)
125 keV \leftarrow 36.5 keV

\[N_A \langle \sigma v \rangle = N_A \frac{(8/\pi)^{1/2}}{\mu^{1/2}(k_BT)^{3/2}} \int_0^\infty \sigma E \exp(-E/k_BT) dE, \]

\[E_0 = \left(\frac{\mu}{2} \right)^{1/3} \left(\frac{\pi e^2 Z_1 Z_2 k_B T}{\hbar} \right)^{2/3} = 0.1220(Z_1^2 Z_2^2 A)^{1/3} T_9^{2/3} \text{ MeV} \]
Reaction rates from determined by THM

\[^{17}\text{O}(p, \alpha)^{14}\text{N} \]

Sergi et al. 2015 PRC in press

POSTER n.37

\[^{18}\text{O}(p, \alpha)^{15}\text{N} \]

<table>
<thead>
<tr>
<th>(\omega \gamma) (eV)</th>
<th>THM</th>
<th>Chafa et al. 2007</th>
<th>NACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 keV</td>
<td>3.4 ± 0.6 (10^{-6})</td>
<td>4.7±0.8·10(^{-9})</td>
<td>5.5(^{+1.8}_{-1.0})·10(^{-9})</td>
</tr>
<tr>
<td>183 keV</td>
<td>1.16 ± 0.1 (10^{-3})</td>
<td>1.66 ± 0.1 10(^{-3})</td>
<td>5.8(^{+5.2}_{-5.8})·10(^{-5})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\omega \gamma) (eV)</th>
<th>THM</th>
<th>NACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 keV</td>
<td>8.3(^{+3.8}_{-2.6}) 10(^{-19})</td>
<td>6(^{+17.5}_{-5}) 10(^{-19})</td>
</tr>
<tr>
<td>90 keV</td>
<td>1.8 ± 0.3 10(^{-7})</td>
<td>1.6 ± 0.5 10(^{-7})</td>
</tr>
</tbody>
</table>
Reaction rate from determined by THM

\[^{17}\text{O}(p, \alpha)^{14}\text{N} \]
Sergi et al. 2015 PRC in press
POSTER n.37

\[^{18}\text{O}(p, \alpha)^{15}\text{N} \]
La Cognata et al. 2010

<table>
<thead>
<tr>
<th>(\omega \gamma) (eV)</th>
<th>THM</th>
<th>Chafa et al. 2007</th>
<th>NACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 keV</td>
<td>3.4 ± 0.6 (10^{-6})</td>
<td>4.7(0.8)(10^{-9})</td>
<td>5.5(1.8)(10^{-9})</td>
</tr>
<tr>
<td>183 keV</td>
<td>1.16 ± 0.1 (10^{-3})</td>
<td>1.66 (0.1)(10^{-3})</td>
<td>5.8(5.2)(5.8)(10^{-5})</td>
</tr>
</tbody>
</table>
$^{18}\text{O}(p, \alpha)^{15}\text{N}$ and the challenging Nitrogen isotopic ratio in SiC grains
$^{17}\text{O}+\text{p}$ reaction rates and Oxide grains

- RGB stars with $1M_{\odot} < M_\star < 2M_{\odot}$ and solar composition
- AGB stars with $M_\star < 2M_{\odot}$ and solar composition
$^{17}\text{O}+\text{p}$ reaction rates and Oxide grains

- Low mass RGB stars ($M_\star<2M_\odot$) are progenitor of group 1 grains
- Extra-mixing in AGB stars account for isotopic composition of Group 2 oxide grains

$^{17}\text{O}+\text{p}$ from Chafa et al. 2007

Palmerini et al. 2011
17O+p reaction rates and Oxide grains

- Mass range of stellar progenitors of group 2 oxide grains is $1M_\odot < M_\star < 1.2M_\odot$

- Group 2 grains might be divided in 2 subgroups because of the progenitor mass
Aluminum isotopic ratio: a possible solution from nuclear physics?

How to reach $^{26}\text{Al}/^{27}\text{Al}>0.02$ shown by part of group 2 grains?
Aluminum isotopic ratio: a possible stellar solution from nuclear physics

- The measurement of $^{25}\text{Mg}(p, \gamma)^{26}\text{Al}$ excludes that a solution coming from nuclear data (Strieder et al. 2012)

Extra-mixing

Convective envelope

H-burning shell

- What about the mixing profile?
How does 7Li come from the Cosmos?

- **Nucleosynthesis**: Light elements created - O, He, Li
 - $t = 1$ second
 - $T = 1$ MeV
 - $\sim 10^9$ e

- **Quark-hadron transition**: Hadrons form - protons & neutrons
 - $T = 1$ GeV
 - $t = 10^{-6}$ s

- **Electroweak phase transition**: Electromagnetic & weak nuclear forces become differentiated: $SU(3)\times SU(2)\times U(1)$
 - $T = 10^2$ GeV
 - $t = 10^{-11}$ s

- **Grand unification transition**: $G \rightarrow SU(3)\times SU(2)\times U(1)$
 - $T = 10^7$ GeV
 - $t = 10^{-5}$ s

- **The Planck epoch**: The quantum gravity barrier
 - $T = 10^{16}$ GeV
 - $t = 10^{-43}$ s

- **Today t_0**
 - Life on earth
 - Solar system
 - Quasars

- **Galaxy formation**
 - Epoch of gravitational collapse
 - $t = 400,000$ years
 - $T = 3000$ K (1 eV)

- **Recombination**
 - Helium-adatoms decouples (CBB)
 - Matter domination
 - Onset of gravitational instability
 - $t = 3$ minutes

- **Molecular Cloud**

- **Solar System**

- **Salar de Uyuni**

...and a well-known Cosmological problem

S. Palmerini
A new estimation of 7Be life-time in Stellar Conditions

Sun:
$T = 1.57 \times 10^7$ K
$\rho = 160 \text{ g/cm}^3$

RGB & AGB:
$T = 5 \times 10^7 - 2 \times 10^6$ K
$\rho = 0.01 - 100 \text{ g/cm}^3$

The Poisson–Boltzmann approach (the other "classical" one) does not hold outside the conditions of the solar nucleus. In particular, at lower temperatures and densities, where a large part of the Li production occurs (because the competing proton captures on 7Be become ineffective).
Li in AGBs and the ‘new’ 7Be life time

3He

7Be

4He

7Li

(p, α) 4He

(e^-, γ) 7Li

(p, γ) 8B(β) 8Be \rightarrow 2α

8Be \rightarrow 2α

Figure 1. Electron-capture half-life in days for 7Be as a function of ρ and T.

(A color version of this figure is available in the online journal.)
In nuclear astrophysics

- Sometimes solutions come from nuclei ($^{17}\text{O}/^{16}\text{O}$ in grains)

- Sometimes solutions come from stars ($^{26}\text{Al}/^{27}\text{Al}$ in grains)

- Other times we do not know yet ($^{14}\text{N}/^{15}\text{N}$ in grains and the Li problem)

- In any case it is necessary to collaborate